您好,登錄后才能下訂單哦!
什么是求素數
素數指的是因子只有1和本身的數(1不是素數),求解素數在數學上應用非常廣泛,而求解n以內的素數也是我們編程時常遇到的問題,在這個問題上,篩選法求解素數運行得非常快。
i在2到n-1之間任取一個數,如果n能被整除則不是素數,否則就是素數
稱篩法
篩選法又稱篩法,是求不超過自然數N(N>1)的所有質數的一種方法。據說是古希臘的埃拉托斯特尼(Eratosthenes,約公元前274~194年)發明的,又稱埃拉托斯特尼篩子。
具體做法是:
先把N個自然數按次序排列起來。1不是質數,也不是合數,要劃去。第二個數2是質數留下來,而把2后面所有能被2整除的數都劃去。2后面第一個沒劃去的數是3,把3留下,再把3后面所有能被3整除的數都劃去。3后面第一個沒劃去的數是5,把5留下,再把5后面所有能被5整除的數都劃去。這樣一直做下去,就會把不超過N的全部合數都篩掉,留下的就是不超過N的全部質數。因為希臘人是把數寫在涂臘的板上,每要劃去一個數,就在上面記以小點,尋求質數的工作完畢后,這許多小點就像一個篩子,所以就把埃拉托斯特尼的方法叫做“埃拉托斯特尼篩”,簡稱“篩法”。(另一種解釋是當時的數寫在紙草上,每要劃去一個數,就把這個數挖去,尋求質數的工作完畢后,這許多小洞就像一個篩子。)
普通枚舉法:
#include <iostream> #include <string> #include <cmath> #include <cstring> using namespace std; bool isPlain(int x){ if(x<2) return false; else{ for(int i=2;i<x;i++) { if(!(x%i)) return false; } } return true; } int main() { int n; cin>>n; int cot=0; for(int j=0;j<n;j++){ if(isPlain(j)){ cout<<j<<((++cot%7==0)?"\n":"\t"); } } }
篩選法:
原始版本:
#include <iostream> #include <string> #include <cmath> #include <cstring> using namespace std; int main() { int n; cin>>n; bool* ans=new bool[n]; memset(ans,true,sizeof(bool)*n);// ans[0]=false; ans[1]=false; for(int i=2;i<n;i++){ if(ans[i]){ for(int j=i*2;j<n;j+=i){//倍數取整 ans[j]=false; } } } int col = 0; for(int i=0;i<n;i++){ if(ans[i]){ cout<<i<<" "; } } return 0; }
改進版本
#include <iostream> #include <string> #include <cmath> #include <cstring> #include <bitset> using namespace std; int main() { int n; cin>>n; bitset<100000> ans; ans.set(0); ans.set(1); for(int j=2; j<=sqrt(n); j++) { for(int i=2*j; i < n; i+=j) { ans.set(i); } } int cot=0; for(int i=0; i<n; i++) { if(ans[i]!=1) { cout<<i<<((++cot%7==0)?"\n":"\t"); } } }
總結
以上就是這篇文章的全部內容了,希望本文的內容對大家的學習或者工作具有一定的參考學習價值,如果有疑問大家可以留言交流,謝謝大家對億速云的支持。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。