您好,登錄后才能下訂單哦!
簡要:
LBPH(Local Binary PatternsHistograms)局部二進制編碼直方圖,建立在LBPH基礎之上的人臉識別法基本思想如下:首先以每個像素為中心,判斷與周圍像素灰度值大小關系,對其進行二進制編碼,從而獲得整幅圖像的LBP編碼圖像;再將LBP圖像分為個區域,獲取每個區域的LBP編碼直方圖,繼而得到整幅圖像的LBP編碼直方圖,通過比較不同人臉圖像LBP編碼直方圖達到人臉識別的目的,其優點是不會受到光照、縮放、旋轉和平移的影響。
#include<opencv2\opencv.hpp> #include<opencv2\face.hpp> using namespace cv; using namespace face; using namespace std; char win_title[40] = {}; int main(int arc, char** argv) { //namedWindow("input",CV_WINDOW_AUTOSIZE); //讀入模型需要輸入的數據,用來訓練的圖像vector<Mat>images和標簽vector<int>labels string filename = string("path.txt"); ifstream file(filename); if (!file) { printf("could not load file"); } vector<Mat>images; vector<int>labels; char separator = ';'; string line,path, classlabel; while (getline(file,line)) { stringstream lines(line); getline(lines, path, separator); getline(lines, classlabel); //printf("%d\n", atoi(classlabel.c_str())); images.push_back(imread(path, 0)); labels.push_back(atoi(classlabel.c_str()));//atoi(ASCLL to int)將字符串轉換為整數型 } int height = images[0].rows; int width = images[0].cols; printf("height:%d,width:%d\n", height, width); //將最后一個樣本作為測試樣本 Mat testSample = images[images.size() - 1]; int testLabel = labels[labels.size() - 1]; //刪除列表末尾的元素 images.pop_back(); labels.pop_back(); //加載,訓練,預測 Ptr<LBPHFaceRecognizer> model = LBPHFaceRecognizer::create(); model->train(images, labels); int predictedLabel = model->predict(testSample); printf("actual label:%d,predict label :%d\n", testLabel, predictedLabel); int radius = model->getRadius(); int neibs = model->getNeighbors(); int grad_x = model->getGridX(); int grad_y = model->getGridY(); double t = model->getThreshold(); printf("radius:%d\n", radius); printf("neibs:%d\n", neibs); printf("grad_x:%d\n", grad_x); printf("grad_y:%d\n", grad_y); printf("threshold:%.2f\n", t); waitKey(0); return 0; }
以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持億速云。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。