91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

一篇文章快速了解Python的GIL

發布時間:2020-10-19 20:15:19 來源:腳本之家 閱讀:140 作者:cenalulu 欄目:開發技術

前言:博主在剛接觸Python的時候時常聽到GIL這個詞,并且發現這個詞經常和Python無法高效的實現多線程劃上等號。本著不光要知其然,還要知其所以然的研究態度,博主搜集了各方面的資料,花了一周內幾個小時的閑暇時間深入理解了下GIL,并歸納成此文,也希望讀者能通過次本文更好且客觀的理解GIL。

GIL是什么

首先需要明確的一點是GIL并不是Python的特性,它是在實現Python解析器(CPython)時所引入的一個概念。就好比C++是一套語言(語法)標準,但是可以用不同的編譯器來編譯成可執行代碼。有名的編譯器例如GCC,INTEL C++,Visual C++等。Python也一樣,同樣一段代碼可以通過CPython,PyPy,Psyco等不同的Python執行環境來執行。像其中的JPython就沒有GIL。然而因為CPython是大部分環境下默認的Python執行環境。所以在很多人的概念里CPython就是Python,也就想當然的把GIL歸結為Python語言的缺陷。所以這里要先明確一點:GIL并不是Python的特性,Python完全可以不依賴于GIL。

那么CPython實現中的GIL又是什么呢?GIL全稱Global Interpreter Lock為了避免誤導,我們還是來看一下官方給出的解釋:

In CPython, the global interpreter lock, or GIL, is a mutex that prevents multiple native threads from executing Python bytecodes at once. This lock is necessary mainly because CPython's memory management is not thread-safe. (However, since the GIL exists, other features have grown to depend on the guarantees that it enforces.)

好吧,是不是看上去很糟糕?一個防止多線程并發執行機器碼的一個Mutex,乍一看就是個BUG般存在的全局鎖嘛!別急,我們下面慢慢的分析。

為什么會有GIL

由于物理上得限制,各CPU廠商在核心頻率上的比賽已經被多核所取代。為了更有效的利用多核處理器的性能,就出現了多線程的編程方式,而隨之帶來的就是線程間數據一致性和狀態同步的困難。即使在CPU內部的Cache也不例外,為了有效解決多份緩存之間的數據同步時各廠商花費了不少心思,也不可避免的帶來了一定的性能損失。

Python當然也逃不開,為了利用多核,Python開始支持多線程。而解決多線程之間數據完整性和狀態同步的最簡單方法自然就是加鎖。 于是有了GIL這把超級大鎖,而當越來越多的代碼庫開發者接受了這種設定后,他們開始大量依賴這種特性(即默認python內部對象是thread-safe的,無需在實現時考慮額外的內存鎖和同步操作)。

慢慢的這種實現方式被發現是蛋疼且低效的。但當大家試圖去拆分和去除GIL的時候,發現大量庫代碼開發者已經重度依賴GIL而非常難以去除了。有多難?做個類比,像MySQL這樣的“小項目”為了把Buffer Pool Mutex這把大鎖拆分成各個小鎖也花了從5.5到5.6再到5.7多個大版為期近5年的時間,本且仍在繼續。MySQL這個背后有公司支持且有固定開發團隊的產品走的如此艱難,那又更何況Python這樣核心開發和代碼貢獻者高度社區化的團隊呢?

所以簡單的說GIL的存在更多的是歷史原因。如果推到重來,多線程的問題依然還是要面對,但是至少會比目前GIL這種方式會更優雅。

GIL的影響

從上文的介紹和官方的定義來看,GIL無疑就是一把全局排他鎖。毫無疑問全局鎖的存在會對多線程的效率有不小影響。甚至就幾乎等于Python是個單線程的程序。
那么讀者就會說了,全局鎖只要釋放的勤快效率也不會差啊。只要在進行耗時的IO操作的時候,能釋放GIL,這樣也還是可以提升運行效率的嘛。或者說再差也不會比單線程的效率差吧。理論上是這樣,而實際上呢?Python比你想的更糟。

下面我們就對比下Python在多線程和單線程下得效率對比。測試方法很簡單,一個循環1億次的計數器函數。一個通過單線程執行兩次,一個多線程執行。最后比較執行總時間。測試環境為雙核的Mac pro。注:為了減少線程庫本身性能損耗對測試結果帶來的影響,這里單線程的代碼同樣使用了線程。只是順序的執行兩次,模擬單線程。

順序執行的單線程(single_thread.py)

#! /usr/bin/python
 
from threading import Thread
import time
 
def my_counter():
 i = 0
 for _ in range(100000000):
  i = i + 1
 return True
 
def main():
 thread_array = {}
 start_time = time.time()
 for tid in range(2):
  t = Thread(target=my_counter)
  t.start()
  t.join()
 end_time = time.time()
 print("Total time: {}".format(end_time - start_time))
 
if __name__ == '__main__':
 main()

同時執行的兩個并發線程(multi_thread.py)

#! /usr/bin/python
 
from threading import Thread
import time
 
def my_counter():
 i = 0
 for _ in range(100000000):
  i = i + 1
 return True
 
def main():
 thread_array = {}
 start_time = time.time()
 for tid in range(2):
  t = Thread(target=my_counter)
  t.start()
  thread_array[tid] = t
 for i in range(2):
  thread_array[i].join()
 end_time = time.time()
 print("Total time: {}".format(end_time - start_time))
 
if __name__ == '__main__':
 main()

下圖就是測試結果

一篇文章快速了解Python的GIL

可以看到python在多線程的情況下居然比單線程整整慢了45%。按照之前的分析,即使是有GIL全局鎖的存在,串行化的多線程也應該和單線程有一樣的效率才對。那么怎么會有這么糟糕的結果呢?

讓我們通過GIL的實現原理來分析這其中的原因。

當前GIL設計的缺陷

基于pcode數量的調度方式

按照Python社區的想法,操作系統本身的線程調度已經非常成熟穩定了,沒有必要自己搞一套。所以Python的線程就是C語言的一個pthread,并通過操作系統調度算法進行調度(例如linux是CFS)。為了讓各個線程能夠平均利用CPU時間,python會計算當前已執行的微代碼數量,達到一定閾值后就強制釋放GIL。而這時也會觸發一次操作系統的線程調度(當然是否真正進行上下文切換由操作系統自主決定)。

偽代碼

while True:
 acquire GIL
 for i in 1000:
  do something
 release GIL
 /* Give Operating System a chance to do thread scheduling */

這種模式在只有一個CPU核心的情況下毫無問題。任何一個線程被喚起時都能成功獲得到GIL(因為只有釋放了GIL才會引發線程調度)。但當CPU有多個核心的時候,問題就來了。從偽代碼可以看到,從release GIL到acquire GIL之間幾乎是沒有間隙的。所以當其他在其他核心上的線程被喚醒時,大部分情況下主線程已經又再一次獲取到GIL了。這個時候被喚醒執行的線程只能白白的浪費CPU時間,看著另一個線程拿著GIL歡快的執行著。然后達到切換時間后進入待調度狀態,再被喚醒,再等待,以此往復惡性循環。

PS:當然這種實現方式是原始而丑陋的,Python的每個版本中也在逐漸改進GIL和線程調度之間的互動關系。例如先嘗試持有GIL在做線程上下文切換,在IO等待時釋放GIL等嘗試。但是無法改變的是GIL的存在使得操作系統線程調度的這個本來就昂貴的操作變得更奢侈了。

關于GIL影響的擴展閱讀

為了直觀的理解GIL對于多線程帶來的性能影響,這里直接借用的一張測試結果圖(見下圖)。圖中表示的是兩個線程在雙核CPU上得執行情況。兩個線程均為CPU密集型運算線程。綠色部分表示該線程在運行,且在執行有用的計算,紅色部分為線程被調度喚醒,但是無法獲取GIL導致無法進行有效運算等待的時間。

一篇文章快速了解Python的GIL

由圖可見,GIL的存在導致多線程無法很好的立即多核CPU的并發處理能力。

那么Python的IO密集型線程能否從多線程中受益呢?我們來看下面這張測試結果。顏色代表的含義和上圖一致。白色部分表示IO線程處于等待。可見,當IO線程收到數據包引起終端切換后,仍然由于一個CPU密集型線程的存在,導致無法獲取GIL鎖,從而進行無盡的循環等待。

一篇文章快速了解Python的GIL

簡單的總結下就是:Python的多線程在多核CPU上,只對于IO密集型計算產生正面效果;而當有至少有一個CPU密集型線程存在,那么多線程效率會由于GIL而大幅下降。

如何避免受到GIL的影響

說了那么多,如果不說解決方案就僅僅是個科普帖,然并卵。GIL這么爛,有沒有辦法繞過呢?我們來看看有哪些現成的方案。

用multiprocess替代Thread

multiprocess庫的出現很大程度上是為了彌補thread庫因為GIL而低效的缺陷。它完整的復制了一套thread所提供的接口方便遷移。唯一的不同就是它使用了多進程而不是多線程。每個進程有自己的獨立的GIL,因此也不會出現進程之間的GIL爭搶。

當然multiprocess也不是萬能良藥。它的引入會增加程序實現時線程間數據通訊和同步的困難。就拿計數器來舉例子,如果我們要多個線程累加同一個變量,對于thread來說,申明一個global變量,用thread.Lock的context包裹住三行就搞定了。而multiprocess由于進程之間無法看到對方的數據,只能通過在主線程申明一個Queue,put再get或者用sharememory的方法。這個額外的實現成本使得本來就非常痛苦的多線程程序編碼,變得更加痛苦了。具體難點在哪有興趣的讀者可以擴展閱讀這篇文章

用其他解析器

之前也提到了既然GIL只是CPython的產物,那么其他解析器是不是更好呢?沒錯,像JPython和IronPython這樣的解析器由于實現語言的特性,他們不需要GIL的幫助。然而由于用了Java/C#用于解析器實現,他們也失去了利用社區眾多C語言模塊有用特性的機會。所以這些解析器也因此一直都比較小眾。畢竟功能和性能大家在初期都會選擇前者,Doneisbetterthanperfect。

所以沒救了么?

當然Python社區也在非常努力的不斷改進GIL,甚至是嘗試去除GIL。并在各個小版本中有了不少的進步。有興趣的讀者可以擴展閱讀這個Slide

另一個改進ReworkingtheGIL

–將切換顆粒度從基于opcode計數改成基于時間片計數
–避免最近一次釋放GIL鎖的線程再次被立即調度
–新增線程優先級功能(高優先級線程可以迫使其他線程釋放所持有的GIL鎖)

總結

PythonGIL其實是功能和性能之間權衡后的產物,它尤其存在的合理性,也有較難改變的客觀因素。從本分的分析中,我們可以做以下一些簡單的總結:

·因為GIL的存在,只有IOBound場景下得多線程會得到較好的性能
·如果對并行計算性能較高的程序可以考慮把核心部分也成C模塊,或者索性用其他語言實現
·GIL在較長一段時間內將會繼續存在,但是會不斷對其進行改進

以上就是本文關于一篇文章快速了解Python的GIL的全部內容,希望對大家有所幫助。感興趣的朋友可以繼續參閱本站其他相關專題,如有不足之處,歡迎留言指出。感謝朋友們對本站的支持!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

大冶市| 开原市| 普定县| 锡林郭勒盟| 大足县| 博兴县| 西丰县| 祥云县| 千阳县| 大连市| 海南省| 沧源| 鹿泉市| 永川市| 当雄县| 都兰县| 河源市| 红原县| 上思县| 屏山县| 修文县| 松阳县| 吉安市| 石狮市| 瑞安市| 河东区| 旬邑县| 茌平县| 五台县| 略阳县| 郓城县| 中超| 武汉市| 微博| 当阳市| 琼中| 惠安县| 惠水县| 阳城县| 鹤壁市| 洛扎县|