您好,登錄后才能下訂單哦!
本文實例講述了Python實現PS圖像調整黑白效果。分享給大家供大家參考,具體如下:
這里用Python 實現 PS 里的圖像調整–黑白,PS 里的黑白并不是簡單粗暴的將圖像轉為灰度圖,而是做了非常精細的處理,具體的算法原理和效果圖可以參考附錄說明。
比起之前的程序,對代碼進行了優化,完全用矩陣運算代替了 for 循環,運算效率提升了很多。具體的代碼如下:
import numpy as np import matplotlib.pyplot as plt from skimage import io file_name='D:/Image Processing/PS Algorithm/4.jpg'; img=io.imread(file_name) img = img * 1.0 Color_ratio = np.zeros(6) Color_ratio[0]=0.4; # Red Color_ratio[1]=0.6; # Yellow Color_ratio[2]=0.4; # Green Color_ratio[3]=0.6; # Cyan Color_ratio[4]=0.2; # Blue Color_ratio[5]=0.8; # Magenta max_val = img.max(axis = 2) min_val = img.min(axis = 2) sum_val = img.sum(axis = 2) mid_val = sum_val - max_val - min_val mask_r = (img[:, :, 0] - min_val - 0.01) > 0 mask_r = 1 - mask_r mask_g = (img[:, :, 1] - min_val - 0.01) > 0 mask_g = 1 - mask_g mask_b = (img[:, :, 2] - min_val - 0.01) > 0 mask_b = 1 - mask_b ratio_max_mid = mask_r * Color_ratio[3] + mask_g * Color_ratio[5] + mask_b * Color_ratio[1] mask_r = (img[:, :, 0] - max_val + 0.01) < 0 mask_r = 1 - mask_r mask_g = (img[:, :, 1] - max_val + 0.01) < 0 mask_g = 1 - mask_g mask_b = (img[:, :, 2] - max_val + 0.01) < 0 mask_b = 1 - mask_b ratio_max= mask_r * Color_ratio[4] + mask_g * Color_ratio[0] + mask_b * Color_ratio[2] I_out = max_val * 1.0 I_out = (max_val-mid_val)*ratio_max + (mid_val-min_val)*ratio_max_mid + min_val plt.figure() plt.imshow(img/255.0) plt.axis('off') plt.figure(2) plt.imshow(I_out/255.0, plt.cm.gray) plt.axis('off') plt.show()
附錄:PS 圖像調整算法——黑白
黑白調整
Photoshop CS的圖像黑白調整功能,是通過對紅、黃、綠、青、藍和洋紅等6種顏色的比例調節來完成的。能更精細地將彩色圖片轉換為高質量的黑白照片。
Photoshop CS圖像黑白調整功能的計算公式為:
gray= (max - mid) * ratio_max + (mid - min) * ratio_max_mid + min
公式中:gray為像素灰度值,max、mid和min分別為圖像像素R、G、B分量顏色的最大值、中間值和最小值,ratio_max為max所代表的分量顏色(單色)比率,ratio_max_mid則為max與mid兩種分量顏色所形成的復色比率。
默認的單色及復色比率為:
Color_Ratio(1)=0.4; %%%% Red
Color_Ratio(2)=0.6; %%%% Yellow
Color_Ratio(3)=0.4; %%%% Green
Color_Ratio(4)=0.6; %%%% Cyan
Color_Ratio(5)=0.2; %%%% Blue
Color_Ratio(6)=0.8; %%%% Magenta
Program:
%%%%% 程序實現圖像的黑白調整功能 clc; clear all; close all; Image=imread('9.jpg'); Image=double(Image); R=Image(:,:,1); G=Image(:,:,2); B=Image(:,:,3); [row, col] = size(R); Gray_img(1:row,1:col)=0; Sum_rgb=R+G+B; %%%% 各種顏色的默認比率 Color_Ratio(1:6)=0; Color_Ratio(1)=0.4; %%%% Red Color_Ratio(2)=0.6; %%%% Yellow Color_Ratio(3)=0.4; %%%% Green Color_Ratio(4)=0.6; %%%% Cyan Color_Ratio(5)=0.2; %%%% Blue Color_Ratio(6)=0.8; %%%% Magenta for i=1:row for j=1:col r=R(i,j); g=G(i,j); b=B(i,j); Max_value=max(r,max(g,b)); Min_value=min(r,min(g,b)); Mid_value=Sum_rgb(i,j)-Max_value-Min_value; if(Min_value==r) Index=0; elseif(Min_value==g) Index=2; else Index=4; end ratio_max_mid=Color_Ratio(mod(Index+3,6)+1); if(Max_value==r) Index=1; elseif(Max_value==g) Index=3; else Index=5; end ratio_max=Color_Ratio(Index); Temp=(Max_value-Mid_value)*ratio_max+(Mid_value-Min_value)... *ratio_max_mid+Min_value; Gray_img(i,j)=(Max_value-Mid_value)*ratio_max+(Mid_value-Min_value)... *ratio_max_mid+Min_value; end end imshow(Image/255); figure, imshow(Gray_img/255);
本例Python運行結果如下:
原圖:
運行效果圖:
更多關于Python相關內容感興趣的讀者可查看本站專題:《Python圖片操作技巧總結》、《Python數據結構與算法教程》、《Python Socket編程技巧總結》、《Python函數使用技巧總結》、《Python字符串操作技巧匯總》、《Python入門與進階經典教程》及《Python文件與目錄操作技巧匯總》
希望本文所述對大家Python程序設計有所幫助。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。