您好,登錄后才能下訂單哦!
這篇文章主要介紹了如何使用Python實現并行任務,具有一定借鑒價值,感興趣的朋友可以參考下,希望大家閱讀完這篇文章之后大有收獲,下面讓小編帶著大家一起了解一下。
Python在程序并行化方面多少有些聲名狼藉。撇開技術上的問題,例如線程的實現和GIL,我覺得錯誤的教學指導才是主要問題。常見的經典Python多線程、多進程教程多顯得偏"重"。而且往往隔靴搔癢,沒有深入探討日常工作中最有用的內容。
傳統的例子
簡單搜索下"Python多線程教程",不難發現幾乎所有的教程都給出涉及類和隊列的例子:
#Example.py ''' Standard Producer/Consumer Threading Pattern ''' import time import threading import Queue class Consumer(threading.Thread): def __init__(self, queue): threading.Thread.__init__(self) self._queue = queue def run(self): while True: # queue.get() blocks the current thread until # an item is retrieved. msg = self._queue.get() # Checks if the current message is # the "Poison Pill" if isinstance(msg, str) and msg == 'quit': # if so, exists the loop break # "Processes" (or in our case, prints) the queue item print "I'm a thread, and I received %s!!" % msg # Always be friendly! print 'Bye byes!' def Producer(): # Queue is used to share items between # the threads. queue = Queue.Queue() # Create an instance of the worker worker = Consumer(queue) # start calls the internal run() method to # kick off the thread worker.start() # variable to keep track of when we started start_time = time.time() # While under 5 seconds.. while time.time() - start_time < 5: # "Produce" a piece of work and stick it in # the queue for the Consumer to process queue.put('something at %s' % time.time()) # Sleep a bit just to avoid an absurd number of messages time.sleep(1) # This the "poison pill" method of killing a thread. queue.put('quit') # wait for the thread to close down worker.join() if __name__ == '__main__': Producer()
哈,看起來有些像 Java 不是嗎?
我并不是說使用生產者/消費者模型處理多線程/多進程任務是錯誤的(事實上,這一模型自有其用武之地)。只是,處理日常腳本任務時我們可以使用更有效率的模型。
問題在于…
首先,你需要一個樣板類;
其次,你需要一個隊列來傳遞對象;
而且,你還需要在通道兩端都構建相應的方法來協助其工作(如果需想要進行雙向通信或是保存結果還需要再引入一個隊列)。
worker越多,問題越多
按照這一思路,你現在需要一個worker線程的線程池。下面是一篇IBM經典教程中的例子——在進行網頁檢索時通過多線程進行加速。
#Example2.py ''' A more realistic thread pool example ''' import time import threading import Queue import urllib2 class Consumer(threading.Thread): def __init__(self, queue): threading.Thread.__init__(self) self._queue = queue def run(self): while True: content = self._queue.get() if isinstance(content, str) and content == 'quit': break response = urllib2.urlopen(content) print 'Bye byes!' def Producer(): urls = [ 'http://www.python.org', 'http://www.yahoo.com' 'http://www.scala.org', 'http://www.google.com' # etc.. ] queue = Queue.Queue() worker_threads = build_worker_pool(queue, 4) start_time = time.time() # Add the urls to process for url in urls: queue.put(url) # Add the poison pillv for worker in worker_threads: queue.put('quit') for worker in worker_threads: worker.join() print 'Done! Time taken: {}'.format(time.time() - start_time) def build_worker_pool(queue, size): workers = [] for _ in range(size): worker = Consumer(queue) worker.start() workers.append(worker) return workers if __name__ == '__main__': Producer()
這段代碼能正確的運行,但仔細看看我們需要做些什么:構造不同的方法、追蹤一系列的線程,還有為了解決惱人的死鎖問題,我們需要進行一系列的join操作。這還只是開始……
至此我們回顧了經典的多線程教程,多少有些空洞不是嗎?樣板化而且易出錯,這樣事倍功半的風格顯然不那么適合日常使用,好在我們還有更好的方法。
何不試試 map
map這一小巧精致的函數是簡捷實現Python程序并行化的關鍵。map源于Lisp這類函數式編程語言。它可以通過一個序列實現兩個函數之間的映射。
urls = ['http://www.yahoo.com', 'http://www.reddit.com'] results = map(urllib2.urlopen, urls)
上面的這兩行代碼將 urls 這一序列中的每個元素作為參數傳遞到 urlopen 方法中,并將所有結果保存到 results 這一列表中。其結果大致相當于:
results = [] for url in urls: results.append(urllib2.urlopen(url))
map 函數一手包辦了序列操作、參數傳遞和結果保存等一系列的操作。
為什么這很重要呢?這是因為借助正確的庫,map可以輕松實現并行化操作。
在Python中有個兩個庫包含了map函數: multiprocessing和它鮮為人知的子庫 multiprocessing.dummy.
這里多扯兩句:multiprocessing.dummy? mltiprocessing庫的線程版克隆?這是蝦米?即便在multiprocessing庫的官方文檔里關于這一子庫也只有一句相關描述。而這句描述譯成人話基本就是說:"嘛,有這么個東西,你知道就成."相信我,這個庫被嚴重低估了!
dummy是multiprocessing模塊的完整克隆,唯一的不同在于multiprocessing作用于進程,而dummy模塊作用于線程(因此也包括了Python所有常見的多線程限制)。
所以替換使用這兩個庫異常容易。你可以針對IO密集型任務和CPU密集型任務來選擇不同的庫。
動手嘗試
使用下面的兩行代碼來引用包含并行化map函數的庫:
from multiprocessing import Pool from multiprocessing.dummy import Pool as ThreadPool
實例化 Pool 對象:
pool = ThreadPool()
這條簡單的語句替代了example2.py中buildworkerpool函數7行代碼的工作。它生成了一系列的worker線程并完成初始化工作、將它們儲存在變量中以方便訪問。
Pool對象有一些參數,這里我所需要關注的只是它的第一個參數:processes. 這一參數用于設定線程池中的線程數。其默認值為當前機器CPU的核數。
一般來說,執行CPU密集型任務時,調用越多的核速度就越快。但是當處理網絡密集型任務時,事情有有些難以預計了,通過實驗來確定線程池的大小才是明智的。
pool = ThreadPool(4) # Sets the pool size to 4
線程數過多時,切換線程所消耗的時間甚至會超過實際工作時間。對于不同的工作,通過嘗試來找到線程池大小的最優值是個不錯的主意。
創建好Pool對象后,并行化的程序便呼之欲出了。我們來看看改寫后的example2.py
import urllib2 from multiprocessing.dummy import Pool as ThreadPool urls = [ 'http://www.python.org', 'http://www.python.org/about/', 'http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html', 'http://www.python.org/doc/', 'http://www.python.org/download/', 'http://www.python.org/getit/', 'http://www.python.org/community/', 'https://wiki.python.org/moin/', 'http://planet.python.org/', 'https://wiki.python.org/moin/LocalUserGroups', 'http://www.python.org/psf/', 'http://docs.python.org/devguide/', 'http://www.python.org/community/awards/' # etc.. ] # Make the Pool of workers pool = ThreadPool(4) # Open the urls in their own threads # and return the results results = pool.map(urllib2.urlopen, urls) #close the pool and wait for the work to finish pool.close() pool.join()
實際起作用的代碼只有4行,其中只有一行是關鍵的。map函數輕而易舉的取代了前文中超過40行的例子。為了更有趣一些,我統計了不同方法、不同線程池大小的耗時情況。
# results = [] # for url in urls: # result = urllib2.urlopen(url) # results.append(result) # # ------- VERSUS ------- # # # ------- 4 Pool ------- # # pool = ThreadPool(4) # results = pool.map(urllib2.urlopen, urls) # # ------- 8 Pool ------- # # pool = ThreadPool(8) # results = pool.map(urllib2.urlopen, urls) # # ------- 13 Pool ------- # # pool = ThreadPool(13) # results = pool.map(urllib2.urlopen, urls)
結果:
# Single thread: 14.4 Seconds
# 4 Pool: 3.1 Seconds
# 8 Pool: 1.4 Seconds
# 13 Pool: 1.3 Seconds
很棒的結果不是嗎?這一結果也說明了為什么要通過實驗來確定線程池的大小。在我的機器上當線程池大小大于9帶來的收益就十分有限了。
另一個真實的例子
生成上千張圖片的縮略圖
這是一個CPU密集型的任務,并且十分適合進行并行化。
基礎單進程版本
import os import PIL from multiprocessing import Pool from PIL import Image SIZE = (75,75) SAVE_DIRECTORY = 'thumbs' def get_image_paths(folder): return (os.path.join(folder, f) for f in os.listdir(folder) if 'jpeg' in f) def create_thumbnail(filename): im = Image.open(filename) im.thumbnail(SIZE, Image.ANTIALIAS) base, fname = os.path.split(filename) save_path = os.path.join(base, SAVE_DIRECTORY, fname) im.save(save_path) if __name__ == '__main__': folder = os.path.abspath( '11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840') os.mkdir(os.path.join(folder, SAVE_DIRECTORY)) images = get_image_paths(folder) for image in images: create_thumbnail(Image)
上邊這段代碼的主要工作就是將遍歷傳入的文件夾中的圖片文件,一一生成縮略圖,并將這些縮略圖保存到特定文件夾中。
這我的機器上,用這一程序處理6000張圖片需要花費27.9秒。
如果我們使用map函數來代替for循環:
import os import PIL from multiprocessing import Pool from PIL import Image SIZE = (75,75) SAVE_DIRECTORY = 'thumbs' def get_image_paths(folder): return (os.path.join(folder, f) for f in os.listdir(folder) if 'jpeg' in f) def create_thumbnail(filename): im = Image.open(filename) im.thumbnail(SIZE, Image.ANTIALIAS) base, fname = os.path.split(filename) save_path = os.path.join(base, SAVE_DIRECTORY, fname) im.save(save_path) if __name__ == '__main__': folder = os.path.abspath( '11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840') os.mkdir(os.path.join(folder, SAVE_DIRECTORY)) images = get_image_paths(folder) pool = Pool() pool.map(creat_thumbnail, images) pool.close() pool.join()
5.6 秒!
雖然只改動了幾行代碼,我們卻明顯提高了程序的執行速度。在生產環境中,我們可以為CPU密集型任務和IO密集型任務分別選擇多進程和多線程庫來進一步提高執行速度——這也是解決死鎖問題的良方。此外,由于map函數并不支持手動線程管理,反而使得相關的debug工作也變得異常簡單。
到這里,我們就實現了(基本)通過一行Python實現并行化。
感謝你能夠認真閱讀完這篇文章,希望小編分享的“如何使用Python實現并行任務”這篇文章對大家有幫助,同時也希望大家多多支持億速云,關注億速云行業資訊頻道,更多相關知識等著你來學習!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。