91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

如何使用Python實現并行任務

發布時間:2021-08-03 12:34:09 來源:億速云 閱讀:186 作者:小新 欄目:開發技術

這篇文章主要介紹了如何使用Python實現并行任務,具有一定借鑒價值,感興趣的朋友可以參考下,希望大家閱讀完這篇文章之后大有收獲,下面讓小編帶著大家一起了解一下。

Python在程序并行化方面多少有些聲名狼藉。撇開技術上的問題,例如線程的實現和GIL,我覺得錯誤的教學指導才是主要問題。常見的經典Python多線程、多進程教程多顯得偏"重"。而且往往隔靴搔癢,沒有深入探討日常工作中最有用的內容。

傳統的例子

簡單搜索下"Python多線程教程",不難發現幾乎所有的教程都給出涉及類和隊列的例子:

#Example.py
'''
Standard Producer/Consumer Threading Pattern
'''
import time 
import threading 
import Queue 
class Consumer(threading.Thread): 
  def __init__(self, queue): 
    threading.Thread.__init__(self)
    self._queue = queue 
  def run(self):
    while True: 
      # queue.get() blocks the current thread until 
      # an item is retrieved. 
      msg = self._queue.get() 
      # Checks if the current message is 
      # the "Poison Pill"
      if isinstance(msg, str) and msg == 'quit':
        # if so, exists the loop
        break
      # "Processes" (or in our case, prints) the queue item  
      print "I'm a thread, and I received %s!!" % msg
    # Always be friendly! 
    print 'Bye byes!'
def Producer():
  # Queue is used to share items between
  # the threads.
  queue = Queue.Queue()
  # Create an instance of the worker
  worker = Consumer(queue)
  # start calls the internal run() method to 
  # kick off the thread
  worker.start() 
  # variable to keep track of when we started
  start_time = time.time() 
  # While under 5 seconds.. 
  while time.time() - start_time < 5: 
    # "Produce" a piece of work and stick it in 
    # the queue for the Consumer to process
    queue.put('something at %s' % time.time())
    # Sleep a bit just to avoid an absurd number of messages
    time.sleep(1)
  # This the "poison pill" method of killing a thread. 
  queue.put('quit')
  # wait for the thread to close down
  worker.join()
if __name__ == '__main__':
  Producer()

哈,看起來有些像 Java 不是嗎?

我并不是說使用生產者/消費者模型處理多線程/多進程任務是錯誤的(事實上,這一模型自有其用武之地)。只是,處理日常腳本任務時我們可以使用更有效率的模型。

問題在于…

首先,你需要一個樣板類;
其次,你需要一個隊列來傳遞對象;
而且,你還需要在通道兩端都構建相應的方法來協助其工作(如果需想要進行雙向通信或是保存結果還需要再引入一個隊列)。

worker越多,問題越多

按照這一思路,你現在需要一個worker線程的線程池。下面是一篇IBM經典教程中的例子——在進行網頁檢索時通過多線程進行加速。

#Example2.py
'''
A more realistic thread pool example 
'''
import time 
import threading 
import Queue 
import urllib2 
class Consumer(threading.Thread): 
  def __init__(self, queue): 
    threading.Thread.__init__(self)
    self._queue = queue 
  def run(self):
    while True: 
      content = self._queue.get() 
      if isinstance(content, str) and content == 'quit':
        break
      response = urllib2.urlopen(content)
    print 'Bye byes!'
def Producer():
  urls = [
    'http://www.python.org', 'http://www.yahoo.com'
    'http://www.scala.org', 'http://www.google.com'
    # etc.. 
  ]
  queue = Queue.Queue()
  worker_threads = build_worker_pool(queue, 4)
  start_time = time.time()
  # Add the urls to process
  for url in urls: 
    queue.put(url) 
  # Add the poison pillv
  for worker in worker_threads:
    queue.put('quit')
  for worker in worker_threads:
    worker.join()
  print 'Done! Time taken: {}'.format(time.time() - start_time)
def build_worker_pool(queue, size):
  workers = []
  for _ in range(size):
    worker = Consumer(queue)
    worker.start() 
    workers.append(worker)
  return workers
if __name__ == '__main__':
  Producer()

這段代碼能正確的運行,但仔細看看我們需要做些什么:構造不同的方法、追蹤一系列的線程,還有為了解決惱人的死鎖問題,我們需要進行一系列的join操作。這還只是開始……

至此我們回顧了經典的多線程教程,多少有些空洞不是嗎?樣板化而且易出錯,這樣事倍功半的風格顯然不那么適合日常使用,好在我們還有更好的方法。

何不試試 map

map這一小巧精致的函數是簡捷實現Python程序并行化的關鍵。map源于Lisp這類函數式編程語言。它可以通過一個序列實現兩個函數之間的映射。

urls = ['http://www.yahoo.com', 'http://www.reddit.com']
results = map(urllib2.urlopen, urls)

上面的這兩行代碼將 urls 這一序列中的每個元素作為參數傳遞到 urlopen 方法中,并將所有結果保存到 results 這一列表中。其結果大致相當于:

results = []
for url in urls: 
  results.append(urllib2.urlopen(url))

map 函數一手包辦了序列操作、參數傳遞和結果保存等一系列的操作。

為什么這很重要呢?這是因為借助正確的庫,map可以輕松實現并行化操作。

在Python中有個兩個庫包含了map函數: multiprocessing和它鮮為人知的子庫 multiprocessing.dummy.

這里多扯兩句:multiprocessing.dummy? mltiprocessing庫的線程版克隆?這是蝦米?即便在multiprocessing庫的官方文檔里關于這一子庫也只有一句相關描述。而這句描述譯成人話基本就是說:"嘛,有這么個東西,你知道就成."相信我,這個庫被嚴重低估了!

dummy是multiprocessing模塊的完整克隆,唯一的不同在于multiprocessing作用于進程,而dummy模塊作用于線程(因此也包括了Python所有常見的多線程限制)。

所以替換使用這兩個庫異常容易。你可以針對IO密集型任務和CPU密集型任務來選擇不同的庫。

動手嘗試

使用下面的兩行代碼來引用包含并行化map函數的庫:

from multiprocessing import Pool
from multiprocessing.dummy import Pool as ThreadPool

實例化 Pool 對象:

pool = ThreadPool()

這條簡單的語句替代了example2.py中buildworkerpool函數7行代碼的工作。它生成了一系列的worker線程并完成初始化工作、將它們儲存在變量中以方便訪問。

Pool對象有一些參數,這里我所需要關注的只是它的第一個參數:processes. 這一參數用于設定線程池中的線程數。其默認值為當前機器CPU的核數。

一般來說,執行CPU密集型任務時,調用越多的核速度就越快。但是當處理網絡密集型任務時,事情有有些難以預計了,通過實驗來確定線程池的大小才是明智的。

pool = ThreadPool(4) # Sets the pool size to 4

線程數過多時,切換線程所消耗的時間甚至會超過實際工作時間。對于不同的工作,通過嘗試來找到線程池大小的最優值是個不錯的主意。

創建好Pool對象后,并行化的程序便呼之欲出了。我們來看看改寫后的example2.py

import urllib2 
from multiprocessing.dummy import Pool as ThreadPool 
urls = [
  'http://www.python.org', 
  'http://www.python.org/about/',
  'http://www.onlamp.com/pub/a/python/2003/04/17/metaclasses.html',
  'http://www.python.org/doc/',
  'http://www.python.org/download/',
  'http://www.python.org/getit/',
  'http://www.python.org/community/',
  'https://wiki.python.org/moin/',
  'http://planet.python.org/',
  'https://wiki.python.org/moin/LocalUserGroups',
  'http://www.python.org/psf/',
  'http://docs.python.org/devguide/',
  'http://www.python.org/community/awards/'
  # etc.. 
  ]
# Make the Pool of workers
pool = ThreadPool(4) 
# Open the urls in their own threads
# and return the results
results = pool.map(urllib2.urlopen, urls)
#close the pool and wait for the work to finish 
pool.close() 
pool.join()

實際起作用的代碼只有4行,其中只有一行是關鍵的。map函數輕而易舉的取代了前文中超過40行的例子。為了更有趣一些,我統計了不同方法、不同線程池大小的耗時情況。

# results = [] 
# for url in urls:
#  result = urllib2.urlopen(url)
#  results.append(result)
# # ------- VERSUS ------- # 
# # ------- 4 Pool ------- # 
# pool = ThreadPool(4) 
# results = pool.map(urllib2.urlopen, urls)
# # ------- 8 Pool ------- # 
# pool = ThreadPool(8) 
# results = pool.map(urllib2.urlopen, urls)
# # ------- 13 Pool ------- # 
# pool = ThreadPool(13) 
# results = pool.map(urllib2.urlopen, urls)

結果:

#        Single thread:  14.4 Seconds
#               4 Pool:   3.1 Seconds
#               8 Pool:   1.4 Seconds
#              13 Pool:   1.3 Seconds

很棒的結果不是嗎?這一結果也說明了為什么要通過實驗來確定線程池的大小。在我的機器上當線程池大小大于9帶來的收益就十分有限了。

另一個真實的例子

生成上千張圖片的縮略圖

這是一個CPU密集型的任務,并且十分適合進行并行化。

基礎單進程版本

import os 
import PIL 
from multiprocessing import Pool 
from PIL import Image
SIZE = (75,75)
SAVE_DIRECTORY = 'thumbs'
def get_image_paths(folder):
  return (os.path.join(folder, f) 
      for f in os.listdir(folder) 
      if 'jpeg' in f)
def create_thumbnail(filename): 
  im = Image.open(filename)
  im.thumbnail(SIZE, Image.ANTIALIAS)
  base, fname = os.path.split(filename) 
  save_path = os.path.join(base, SAVE_DIRECTORY, fname)
  im.save(save_path)
if __name__ == '__main__':
  folder = os.path.abspath(
    '11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840')
  os.mkdir(os.path.join(folder, SAVE_DIRECTORY))
  images = get_image_paths(folder)
  for image in images:
    create_thumbnail(Image)

上邊這段代碼的主要工作就是將遍歷傳入的文件夾中的圖片文件,一一生成縮略圖,并將這些縮略圖保存到特定文件夾中。

這我的機器上,用這一程序處理6000張圖片需要花費27.9秒。

如果我們使用map函數來代替for循環:

import os 
import PIL 
from multiprocessing import Pool 
from PIL import Image
SIZE = (75,75)
SAVE_DIRECTORY = 'thumbs'
def get_image_paths(folder):
  return (os.path.join(folder, f) 
      for f in os.listdir(folder) 
      if 'jpeg' in f)
def create_thumbnail(filename): 
  im = Image.open(filename)
  im.thumbnail(SIZE, Image.ANTIALIAS)
  base, fname = os.path.split(filename) 
  save_path = os.path.join(base, SAVE_DIRECTORY, fname)
  im.save(save_path)
if __name__ == '__main__':
  folder = os.path.abspath(
    '11_18_2013_R000_IQM_Big_Sur_Mon__e10d1958e7b766c3e840')
  os.mkdir(os.path.join(folder, SAVE_DIRECTORY))
  images = get_image_paths(folder)
  pool = Pool()
  pool.map(creat_thumbnail, images)
  pool.close()
  pool.join()

5.6 秒!

雖然只改動了幾行代碼,我們卻明顯提高了程序的執行速度。在生產環境中,我們可以為CPU密集型任務和IO密集型任務分別選擇多進程和多線程庫來進一步提高執行速度——這也是解決死鎖問題的良方。此外,由于map函數并不支持手動線程管理,反而使得相關的debug工作也變得異常簡單。

到這里,我們就實現了(基本)通過一行Python實現并行化。

感謝你能夠認真閱讀完這篇文章,希望小編分享的“如何使用Python實現并行任務”這篇文章對大家有幫助,同時也希望大家多多支持億速云,關注億速云行業資訊頻道,更多相關知識等著你來學習!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

惠州市| 奇台县| 菏泽市| 鄂托克旗| 砀山县| 新郑市| 绥化市| 齐齐哈尔市| 绥芬河市| 永昌县| 贺兰县| 杭锦旗| 怀集县| 昌平区| 逊克县| 平远县| 石林| 廉江市| 涿鹿县| 阿拉善左旗| 小金县| 康保县| 辽宁省| 达尔| 乌拉特中旗| 东至县| 桃源县| 永嘉县| 化德县| 扶余县| 杨浦区| 柏乡县| 琼结县| 顺昌县| 台东县| 乡城县| 朝阳县| 吴堡县| 鲁山县| 怀柔区| 南丹县|