您好,登錄后才能下訂單哦!
這篇文章主要講解了“numpy中軸與維度的詳細介紹”,文中的講解內容簡單清晰,易于學習與理解,下面請大家跟著小編的思路慢慢深入,一起來研究和學習“numpy中軸與維度的詳細介紹”吧!
NumPy's main object is the homogeneous multidimensional array. It is a table of elements (usually numbers), all of the same type, indexed by a tuple of positive integers. In NumPy dimensions are called axes. The number of axes is rank.
For example, the coordinates of a point in 3D space [1, 2, 1] is an array of rank 1, because it has one axis. That axis has a length of 3. In the example pictured below, the array has rank 2 (it is 2-dimensional). The first dimension (axis) has a length of 2, the second dimension has a length of 3.
[[ 1., 0., 0.], [ 0., 1., 2.]]
ndarray.ndim
數組軸的個數,在python的世界中,軸的個數被稱作秩
>> X = np.reshape(np.arange(24), (2, 3, 4)) # 也即 2 行 3 列的 4 個平面(plane) >> X array([[[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11]], [[12, 13, 14, 15], [16, 17, 18, 19], [20, 21, 22, 23]]])
shape函數是numpy.core.fromnumeric中的函數,它的功能是讀取矩陣的長度,比如shape[0]就是讀取矩陣第一維度的長度。
shape(x)
(2,3,4)
shape(x)[0]
2
或者
x.shape[0]
2
再來分別看每一個平面的構成:
>> X[:, :, 0] array([[ 0, 4, 8], [12, 16, 20]]) >> X[:, :, 1] array([[ 1, 5, 9], [13, 17, 21]]) >> X[:, :, 2] array([[ 2, 6, 10], [14, 18, 22]]) >> X[:, :, 3] array([[ 3, 7, 11], [15, 19, 23]])
也即在對 np.arange(24)(0, 1, 2, 3, ..., 23) 進行重新的排列時,在多維數組的多個軸的方向上,先分配最后一個軸(對于二維數組,即先分配行的方向,對于三維數組即先分配平面的方向)
reshpae,是數組對象中的方法,用于改變數組的形狀。
二維數組
#!/usr/bin/env python # coding=utf-8 import numpy as np a=np.array([1, 2, 3, 4, 5, 6, 7, 8]) print a d=a.reshape((2,4)) print d
三維數組
#!/usr/bin/env python # coding=utf-8 import numpy as np a=np.array([1, 2, 3, 4, 5, 6, 7, 8]) print a f=a.reshape((2, 2, 2)) print f
形狀變化的原則是數組元素不能發生改變,比如這樣寫就是錯誤的,因為數組元素發生了變化。
#!/usr/bin/env python # coding=utf-8 import numpy as np a=np.array([1, 2, 3, 4, 5, 6, 7, 8]) print a print a.dtype e=a.reshape((2,2)) print e
注意:通過reshape生成的新數組和原始數組公用一個內存,也就是說,假如更改一個數組的元素,另一個數組也將發生改變。
#!/usr/bin/env python # coding=utf-8 import numpy as np a=np.array([1, 2, 3, 4, 5, 6, 7, 8]) print a e=a.reshape((2, 4)) print e a[1]=100 print a print e
Python中reshape函數參數-1的意思
a=np.arange(0, 60, 10) >>>a array([0,10,20,30,40,50]) >>>a.reshape(-1,1) array([[0], [10], [20], [30], [40], [50]])
如果寫成a.reshape(1,1)就會報錯
ValueError:cannot reshape array of size 6 into shape (1,1)
>>> a = np.array([[1,2,3], [4,5,6]]) >>> np.reshape(a, (3,-1)) # the unspecified value is inferred to be 2 array([[1, 2], [3, 4], [5, 6]])
-1表示我懶得計算該填什么數字,由python通過a和其他的值3推測出來。
# 下面是兩張2*3大小的照片(不知道有幾張照片用-1代替),如何把所有二維照片給攤平成一維 >>> image = np.array([[[1,2,3], [4,5,6]], [[1,1,1], [1,1,1]]]) >>> image.shape (2, 2, 3) >>> image.reshape((-1, 6)) array([[1, 2, 3, 4, 5, 6], [1, 1, 1, 1, 1, 1]])
感謝各位的閱讀,以上就是“numpy中軸與維度的詳細介紹”的內容了,經過本文的學習后,相信大家對numpy中軸與維度的詳細介紹這一問題有了更深刻的體會,具體使用情況還需要大家實踐驗證。這里是億速云,小編將為大家推送更多相關知識點的文章,歡迎關注!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。