您好,登錄后才能下訂單哦!
這篇文章給大家介紹numpy 中怎么處理矩陣中的Nan,內容非常詳細,感興趣的小伙伴們可以參考借鑒,希望對大家能有所幫助。
下面我們用平均值來代替缺失值,平均值根據那些非NaN得到。
from numpy import * datMat = mat([[1,2,3],[4,Nan,6]]) numFeat = shape(datMat)[1] for i in range(numFeat): meanVal = mean(datMat[nonzero(~isnan(datMat[:,i].A))[0],i]) #values that are not NaN (a number) datMat[nonzero(isnan(datMat[:,i].A))[0],i] = meanVal #set NaN values to mean
關于numpy 中怎么處理矩陣中的Nan就分享到這里了,希望以上內容可以對大家有一定的幫助,可以學到更多知識。如果覺得文章不錯,可以把它分享出去讓更多的人看到。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。