91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

python生成lmdb格式的文件實例

發布時間:2020-09-06 03:00:52 來源:腳本之家 閱讀:142 作者:dulingtingzi 欄目:開發技術

在crnn訓練的時候需要用到lmdb格式的數據集,下面是python生成lmdb個是數據集的代碼,注意一定要在linux系統下,否則會讀入圖像的時候出問題,可能遇到的問題都在代碼里面注釋了,看代碼即可。

#-*- coding:utf-8 -*-
 
import os
import lmdb#先pip install這個模塊哦
import cv2
import glob
import numpy as np
 
 
def checkImageIsValid(imageBin):
 if imageBin is None:
  return False
 imageBuf = np.fromstring(imageBin, dtype=np.uint8)
 img = cv2.imdecode(imageBuf, cv2.IMREAD_GRAYSCALE)
 if img is None:
  return False
 imgH, imgW = img.shape[0], img.shape[1]
 if imgH * imgW == 0:
  return False
 return True
 
def writeCache(env, cache):
 with env.begin(write=True) as txn:
  for k, v in cache.iteritems():
   txn.put(k, v)
 
def createDataset(outputPath, imagePathList, labelList, lexiconList=None, checkValid=True):
 """
 Create LMDB dataset for CRNN training.
# ARGS:
  outputPath : LMDB output path
  imagePathList : list of image path
  labelList  : list of corresponding groundtruth texts
  lexiconList : (optional) list of lexicon lists
  checkValid : if true, check the validity of every image
 """
 # print (len(imagePathList) , len(labelList))
 assert(len(imagePathList) == len(labelList))
 nSamples = len(imagePathList)
 print '...................'
 env = lmdb.open(outputPath, map_size=8589934592)#1099511627776)所需要的磁盤空間的最小值,之前是1T,我改成了8g,否則會報磁盤空間不足,這個數字是字節
 
 cache = {}
 cnt = 1
 for i in xrange(nSamples):
  imagePath = imagePathList[i]
  label = labelList[i]
  if not os.path.exists(imagePath):
   print('%s does not exist' % imagePath)
   continue
  with open(imagePath, 'r') as f:
   imageBin = f.read()
  if checkValid:
   if not checkImageIsValid(imageBin):
    print('%s is not a valid image' % imagePath)#注意一定要在linux下,否則f.read就不可用了,就會輸出這個信息
    continue
 
  imageKey = 'image-%09d' % cnt
  labelKey = 'label-%09d' % cnt
  cache[imageKey] = imageBin
  cache[labelKey] = label
  if lexiconList:
   lexiconKey = 'lexicon-%09d' % cnt
   cache[lexiconKey] = ' '.join(lexiconList[i])
  if cnt % 1000 == 0:
   writeCache(env, cache)
   cache = {}
   print('Written %d / %d' % (cnt, nSamples))
  cnt += 1
 nSamples = cnt - 1
 cache['num-samples'] = str(nSamples)
 writeCache(env, cache)
 print('Created dataset with %d samples' % nSamples)
 
 
def read_text(path):
 
 with open(path) as f:
  text = f.read()
 text = text.strip()
 
 return text
 
 
if __name__ == '__main__':
 # lmdb 輸出目錄
 outputPath = 'D:/ruanjianxiazai/tuxiangyangben/fengehou/train'#訓練集和驗證集要跑兩遍這個程序,分兩次生成
 
 path = "D:/ruanjianxiazai/tuxiangyangben/fengehou/chenguang/*.jpg"#將txt與jpg的都放在同一個文件里面
 imagePathList = glob.glob(path)
 print '------------',len(imagePathList),'------------'
 imgLabelLists = []
 for p in imagePathList:
  try:
   imgLabelLists.append((p, read_text(p.replace('.jpg', '.txt'))))
  except:
   continue
   
 # imgLabelList = [ (p, read_text(p.replace('.jpg', '.txt'))) for p in imagePathList]
 # sort by labelList
 imgLabelList = sorted(imgLabelLists, key = lambda x:len(x[1]))
 imgPaths = [ p[0] for p in imgLabelList]
 txtLists = [ p[1] for p in imgLabelList]
 
 createDataset(outputPath, imgPaths, txtLists, lexiconList=None, checkValid=True)
 

以上這篇python生成lmdb格式的文件實例就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持億速云。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

铁岭市| 福海县| 灵山县| 平武县| 藁城市| 仪征市| 万年县| 高要市| 桂林市| 岳阳市| 芦溪县| 莱阳市| 安图县| 顺义区| 岐山县| 板桥市| 岳西县| 五指山市| 烟台市| 芦山县| 逊克县| 宁津县| 改则县| 乳源| 翁牛特旗| 遂昌县| 黄浦区| 东辽县| 建昌县| 青海省| 吴忠市| 洞口县| 洪洞县| 曲麻莱县| 日喀则市| 南华县| 望江县| 察哈| 临安市| 海城市| 蓬溪县|