您好,登錄后才能下訂單哦!
這篇文章將為大家詳細講解有關Pandas中怎么給多層索引降級,文章內容質量較高,因此小編分享給大家做個參考,希望大家閱讀完這篇文章后對相關知識有一定的了解。
import pandas as pd import numpy as np df = pd.DataFrame(np.arange(0, 14).reshape(7,2),columns =['a','b'] ) df.a = df.a %3 df['who'] = 'Bob' df.loc[df.a%4==0,'who'] = 'Alice'
a | b | who | |
---|---|---|---|
0 | 0 | 1 | Alice |
1 | 2 | 3 | Bob |
2 | 1 | 5 | Bob |
3 | 0 | 7 | Alice |
4 | 2 | 9 | Bob |
5 | 1 | 11 | Bob |
6 | 0 | 13 | Alice |
# 對一個字段同時用3個聚合函數
gp1 = df.groupby('who').agg({'b':[sum,np.max, np.min], 'a':sum}) gp1
b | a | |||
---|---|---|---|---|
sum | amax | amin | sum | |
who | ||||
Alice | 8.0 | 7.0 | 1.0 | 0 |
Bob | 28.0 | 11.0 | 3.0 | 6 |
索引是有層次的,虛要通過下面這種方式,個人感覺不是很方便.下面介紹2種方法來解決這個問題
#有層次的索引訪問方法 gp1.loc['Bob', ('b', 'sum')]
28.0
# 直接去除一層
gp2 = gp1.copy(deep=True) gp2.columns = gp1.columns.droplevel(0) gp2
sum | amax | amin | sum | |
---|---|---|---|---|
who | ||||
Alice | 8.0 | 7.0 | 1.0 | 0 |
Bob | 28.0 | 11.0 | 3.0 | 6 |
# 把2層合并到一層
gp3 = gp1.copy(deep=True) gp3.columns = ["_".join(x) for x in gp3.columns.ravel()] gp3
b_sum | b_amax | b_amin | a_sum | |
---|---|---|---|---|
who | ||||
Alice | 8.0 | 7.0 | 1.0 | 0 |
Bob | 28.0 | 11.0 | 3.0 | 6 |
關于Pandas中怎么給多層索引降級就分享到這里了,希望以上內容可以對大家有一定的幫助,可以學到更多知識。如果覺得文章不錯,可以把它分享出去讓更多的人看到。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。