您好,登錄后才能下訂單哦!
今天就跟大家聊聊有關如何正確的使用numpy.random模塊,可能很多人都不太了解,為了讓大家更加了解,小編給大家總結了以下內容,希望大家根據這篇文章可以有所收獲。
random模塊用于生成隨機數,下面看看模塊中一些常用函數的用法:
from numpy import random
numpy.random.uniform(low=0.0, high=1.0, size=None)
生出size個符合均分布的浮點數,取值范圍為[low, high),默認取值范圍為[0, 1.0)
>>> random.uniform() 0.3999807403689315 >>> random.uniform(size=1) array([0.55950578]) >>> random.uniform(5, 6) 5.293682668235986 >>> random.uniform(5, 6, size=(2,3)) array([[5.82416021, 5.68916836, 5.89708586], [5.63843125, 5.22963754, 5.4319899 ]])
numpy.random.rand(d0, d1, ..., dn)
生成一個(d0, d1, ..., dn)維的數組,數組的元素取自[0, 1)上的均分布,若沒有參數輸入,則生成一個數
>>> random.rand() 0.4378166124207712 >>> random.rand(1) array([0.69845956]) >>> random.rand(3,2) array([[0.15725424, 0.45786148], [0.63133098, 0.81789056], [0.40032941, 0.19108526]]) >>> random.rand(3,2,1) array([[[0.00404447], [0.3837963 ]], [[0.32518355], [0.82482599]], [[0.79603205], [0.19087375]]])
numpy.random.randint(low, high=None, size=None, dtype='I')
生成size個整數,取值區間為[low, high),若沒有輸入參數high則取值區間為[0, low)
>>> random.randint(8) 5 >>> random.randint(8, size=1) array([1]) >>> random.randint(8, size=(2,2,3)) array([[[4, 7, 0], [1, 4, 1]], [[2, 2, 5], [7, 6, 4]]]) >>> random.randint(8, size=(2,2,3), dtype='int64') array([[[5, 5, 6], [2, 7, 2]], [[2, 7, 6], [4, 7, 7]]], dtype=int64)
numpy.random.random_integers(low, high=None, size=None)
生成size個整數,取值區間為[low, high], 若沒有輸入參數high則取值區間為[1, low],注意這里左右都是閉區間
>>> random.randint(8) >>> random.randint(8, size=1) array([1]) >>> random.randint(8, size=(2,2,3)) array([[[4, 7, 0], [1, 4, 1]], [[2, 2, 5], [7, 6, 4]]]) >>> random.randint(8, size=(2,2,3), dtype='int64') array([[[5, 5, 6], [2, 7, 2]], [[2, 7, 6], [4, 7, 7]]], dtype=int64)
numpy.random.random(size=None)
產生[0.0, 1.0)之間的浮點數
>>> random.random(5) array([0.94128141, 0.98725499, 0.48435957, 0.90948135, 0.40570882]) >>> random.random() 0.49761416226728084
相同用法:
numpy.random.random_sample
numpy.random.ranf
numpy.random.sample (抽取不重復)
numpy.random.bytes(length)
生成隨機字節
>>> random.bytes(1) b'%' >>> random.bytes(2) b'\xd0\xc3'
numpy.random.choice(a, size=None, replace=True, p=None)
從a(數組)中選取size(維度)大小的隨機數,replace=True表示可重復抽取,p是a中每個數出現的概率
若a是整數,則a代表的數組是arange(a)
>>> random.choice(5) 3 >>> random.choice([0.2, 0.4]) 0.2 >>> random.choice([0.2, 0.4], p=[1, 0]) 0.2 >>> random.choice([0.2, 0.4], p=[0, 1]) 0.4 >>> random.choice(5, 5) array([1, 2, 4, 2, 4]) >>> random.choice(5, 5, False) array([2, 0, 1, 4, 3]) >>> random.choice(100, (2, 3, 5), False) array([[[43, 81, 48, 2, 8], [33, 79, 30, 24, 83], [ 3, 82, 97, 49, 98]], [[32, 12, 15, 0, 96], [19, 61, 6, 42, 60], [ 7, 93, 20, 18, 58]]])
numpy.random.permutation(x)
隨機打亂x中的元素。若x是整數,則打亂arange(x),若x是一個數組,則將copy(x)的第一位索引打亂,意思是先復制x,對副本進行打亂處理,打亂只針對數組的第一維
>>> random.permutation(5) array([1, 2, 3, 0, 4]) >>> random.permutation(5) array([1, 4, 3, 2, 0]) >>> random.permutation([[1,2,3],[4,5,6]]) array([[1, 2, 3], [4, 5, 6]]) >>> random.permutation([[1,2,3],[4,5,6]]) array([[4, 5, 6], [1, 2, 3]])
numpy.random.shuffle(x)
與permutation類似,隨機打亂x中的元素。若x是整數,則打亂arange(x). 但是shuffle會對x進行修改
>>> a = arange(5) >>> a array([0, 1, 2, 3, 4]) >>> random.permutation(a) array([1, 4, 3, 2, 0]) >>> a array([0, 1, 2, 3, 4]) >>> random.shuffle(a) >>> a array([4, 1, 3, 2, 0])
numpy.random.seed(seed=None)
設置隨機生成算法的初始值
其它符合函數分布的隨機數函數
numpy.random.beta
numpy.random.binomial
numpy.random.chisquare
numpy.random.dirichlet
numpy.random.exponential
numpy.random.f
numpy.random.gamma
numpy.random.geometric
numpy.random.gumbel
numpy.random.hypergeometric
numpy.random.laplace
numpy.random.logistic
numpy.random.lognormal
numpy.random.logseries
numpy.random.multinomial
numpy.random.multivariate_normal
numpy.random.negative_binomial
numpy.random.noncentral_chisquare
numpy.random.noncentral_f
numpy.random.normal
numpy.random.pareto
numpy.random.poisson
numpy.random.power
numpy.random.randn
numpy.random.rayleigh
numpy.random.standard_cauchy
numpy.random.standard_exponential
numpy.random.standard_gamma
numpy.random.standard_normal
numpy.random.standard_t
numpy.random.triangular
numpy.random.vonmises
numpy.random.wald
numpy.random.weibull
numpy.random.zipf
看完上述內容,你們對如何正確的使用numpy.random模塊有進一步的了解嗎?如果還想了解更多知識或者相關內容,請關注億速云行業資訊頻道,感謝大家的支持。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。