91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

如何使用Pandas和Numpy按時間戳將數據以Groupby方式分組

發布時間:2021-07-01 11:18:15 來源:億速云 閱讀:200 作者:小新 欄目:開發技術

小編給大家分享一下如何使用Pandas和Numpy按時間戳將數據以Groupby方式分組,相信大部分人都還不怎么了解,因此分享這篇文章給大家參考一下,希望大家閱讀完這篇文章后大有收獲,下面讓我們一起去了解一下吧!

首先說一下需求,我需要將數據以分鐘為單位進行分組,然后每一分鐘內的數據作為一行輸出,因為不同時間的數據量不一樣,所以所有數據按照最長的那組數據為準,不足的數據以各自的最后一個數據進行補足。

之后要介紹一下我的數據源,之前沒用的數據列已經去除,我只留下要用到的數據data列和時間戳time列,時間戳是以秒計的,可以看到一共是407454行。

 data     time
0    6522.50 1.530668e+09
1    6522.66 1.530668e+09
2    6523.79 1.530668e+09
3    6523.79 1.530668e+09
4    6524.82 1.530668e+09
5    6524.35 1.530668e+09
6    6523.66 1.530668e+09
7    6522.64 1.530668e+09
8    6523.25 1.530668e+09
9    6523.88 1.530668e+09
10   6525.30 1.530668e+09
11   6525.70 1.530668e+09
...     ...      ...
407443 6310.69 1.531302e+09
407444 6310.55 1.531302e+09
407445 6310.42 1.531302e+09
407446 6310.40 1.531302e+09
407447 6314.03 1.531302e+09
407448 6314.04 1.531302e+09
407449 6312.84 1.531302e+09
407450 6312.57 1.531302e+09
407451 6312.56 1.531302e+09
407452 6314.04 1.531302e+09
407453 6314.04 1.531302e+09
 
[407454 rows x 2 columns]

開始進行數據處理,定義一個函數,輸入為一個DataFrame和時間列的命名。

def getdata_time(dataframe,name):
 dataframe[name] = dataframe[name]/60  #將時間轉換為分鐘
 dataframe[name] = dataframe[name].astype('int64')
 
 datalen = dataframe.groupby(name).count().max()   #獲取數據最大長度
 
 timeframe = dataframe.groupby(name).count().reset_index()#為了獲取時間將分組后時間轉換為DataFrame
 timeseries = timeframe['time']    
 
 array = []   #建立一個空數組以便存值
 for time, group in dataframe.groupby(name): 
 
 tmparray = numpy.array(group['data']) #將series轉換為數組并添加到總數組中
 array.append(tmparray)
 
 notimedata = pandas.DataFrame(array)
 notimedata = notimedata.fillna(method='ffill',axis = 1,limit=datalen[0]) #將缺失值補全
 notimedata[datalen[0]+1] = timeseries  #把時間添加到最后一列
 
 return notimedata

下面將逐行進行分析,首先要以每分鐘為依據進行分組,那么將秒計的時間戳除以60變為分鐘,轉換為int型是為了觀察方便(更改類型是否會導致數據精度缺失影響結果并不清楚,如果有了解的人看到歡迎指出,謝謝)。

datalen是我們要用到的每分鐘中最大的數據長度,用來作為標齊依據。DataFrame.groupby.count()是分別顯示每組數據的個數,并不是顯示有多少個分組,如果想要獲取分組后每一組的index就需要用到下一行的reset_index方法,之所以不直接用reset_index而是在count()方法后調用是因為groupby分組后的結果不是一個DataFrame,而經過count()(不僅僅是count,對分組數據操作的方法都可以,只要得出的結果是與每一組的index一一對應即可)操作后就可以得到一個以index為一列,另一列是count結果的DataFrame。以下為直接進行reset_index操作的報錯:

AttributeError: Cannot access callable attribute 'reset_index' of 'DataFrameGroupBy' objects, try using the 'apply' method

以下為經過count操作后的reset_index方法顯示結果,可以看到一共分為了10397組:

  time data
0   25511135  33
1   25511136  18
2   25511137  25
3   25511138  42
4   25511139  36
5   25511140   7
6   25511141  61
7   25511142  45
8   25511143  46
9   25511144  19
10   25511145  21
...     ...  ...
10387 25521697   3
10388 25521698   9
10389 25521699  16
10390 25521700  13
10391 25521701   4
10392 25521702  34
10393 25521703  124
10394 25521704  302
10395 25521705  86
10396 25521706  52
 
[10397 rows x 2 columns]

提取的timeseries將在最后數據整合時使用。現在開始將每組數據提取,首先建立一個空的數組用來存放,然后利用for循環獲取每一組的信息,time即為分組的index,group即為每一分組的內容,將數據從group['data']中取出并添加到之前建立的空數組里,循環操作過后轉換為DataFrame,當然這個DataFrame中包含了大量缺失值,因為它的列數是以最長的數據為準。如下:

 0    1    2    3   ...  1143 1144 1145 1146
0   6522.50 6522.66 6523.79 6523.79 ...  NaN  NaN  NaN  NaN
1   6523.95 6524.90 6525.00 6524.35 ...  NaN  NaN  NaN  NaN
2   6520.87 6520.00 6520.45 6520.46 ...  NaN  NaN  NaN  NaN
3   6516.34 6516.26 6516.21 6516.21 ...  NaN  NaN  NaN  NaN
4   6513.28 6514.00 6514.00 6514.00 ...  NaN  NaN  NaN  NaN
5   6511.98 6511.98 6511.99 6513.00 ...  NaN  NaN  NaN  NaN
6   6511.00 6511.00 6511.00 6511.00 ...  NaN  NaN  NaN  NaN
7   6511.70 6511.78 6511.99 6511.99 ...  NaN  NaN  NaN  NaN
8   6509.51 6510.00 6510.80 6510.80 ...  NaN  NaN  NaN  NaN
9   6511.36 6510.00 6510.00 6510.00 ...  NaN  NaN  NaN  NaN
10   6507.00 6507.00 6507.00 6507.00 ...  NaN  NaN  NaN  NaN
...    ...   ...   ...   ... ...  ...  ...  ...  ...
10386 6333.77 6331.31 6331.30 6333.19 ...  NaN  NaN  NaN  NaN
10387 6331.68 6331.30 6331.68   NaN ...  NaN  NaN  NaN  NaN
10388 6331.30 6331.30 6331.00 6331.00 ...  NaN  NaN  NaN  NaN
10389 6330.93 6330.92 6330.92 6330.93 ...  NaN  NaN  NaN  NaN
10390 6330.83 6330.83 6330.90 6330.80 ...  NaN  NaN  NaN  NaN
10391 6327.57 6326.00 6326.00 6325.74 ...  NaN  NaN  NaN  NaN
10392 6327.57 6329.70 6328.85 6328.85 ...  NaN  NaN  NaN  NaN
10393 6323.54 6323.15 6323.15 6322.77 ...  NaN  NaN  NaN  NaN
10394 6311.00 6310.83 6310.83 6310.50 ...  NaN  NaN  NaN  NaN
10395 6311.45 6311.32 6310.01 6310.01 ...  NaN  NaN  NaN  NaN
10396 6310.46 6310.46 6310.56 6311.61 ...  NaN  NaN  NaN  NaN
 
[10397 rows x 1147 columns]

可以看到行數是分組個數,一共1147列也是最多的那組數據長度。

之后我們通過調用fillna方法將缺失值進行填充,method='ffill'是指以缺失值前一個數據為依據,axis = 1是以行為單位,limit是指最大填充長度。最終,把我們之前取得的timeseries添加到最后一列,就得到了需求的最終結果。

 0    1    2    ...    1145   1146   1148
0   6522.50 6522.66 6523.79  ...   6522.14 6522.14 25511135
1   6523.95 6524.90 6525.00  ...   6520.00 6520.00 25511136
2   6520.87 6520.00 6520.45  ...   6517.00 6517.00 25511137
3   6516.34 6516.26 6516.21  ...   6514.00 6514.00 25511138
4   6513.28 6514.00 6514.00  ...   6511.97 6511.97 25511139
5   6511.98 6511.98 6511.99  ...   6511.00 6511.00 25511140
6   6511.00 6511.00 6511.00  ...   6510.90 6510.90 25511141
7   6511.70 6511.78 6511.99  ...   6512.09 6512.09 25511142
8   6509.51 6510.00 6510.80  ...   6512.09 6512.09 25511143
9   6511.36 6510.00 6510.00  ...   6507.04 6507.04 25511144
10   6507.00 6507.00 6507.00  ...   6508.57 6508.57 25511145
11   6507.16 6507.74 6507.74  ...   6506.35 6506.35 25511146
...    ...   ...   ...  ...     ...   ...    ...
10388 6331.30 6331.30 6331.00  ...   6331.00 6331.00 25521698
10389 6330.93 6330.92 6330.92  ...   6330.99 6330.99 25521699
10390 6330.83 6330.83 6330.90  ...   6327.58 6327.58 25521700
10391 6327.57 6326.00 6326.00  ...   6325.74 6325.74 25521701
10392 6327.57 6329.70 6328.85  ...   6325.00 6325.00 25521702
10393 6323.54 6323.15 6323.15  ...   6311.00 6311.00 25521703
10394 6311.00 6310.83 6310.83  ...   6315.00 6315.00 25521704
10395 6311.45 6311.32 6310.01  ...   6310.00 6310.00 25521705
10396 6310.46 6310.46 6310.56  ...   6314.04 6314.04 25521706
 
[10397 rows x 1148 columns]

以上是“如何使用Pandas和Numpy按時間戳將數據以Groupby方式分組”這篇文章的所有內容,感謝各位的閱讀!相信大家都有了一定的了解,希望分享的內容對大家有所幫助,如果還想學習更多知識,歡迎關注億速云行業資訊頻道!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

建瓯市| 肥东县| 江都市| 安乡县| 民权县| 泰宁县| 满洲里市| 陕西省| 乌拉特中旗| 池州市| 巴楚县| 寿光市| 滁州市| 简阳市| 财经| 杭锦旗| 厦门市| 麟游县| 特克斯县| 临西县| 寿宁县| 宜黄县| 界首市| 介休市| 白河县| 青川县| 徐闻县| 清河县| 玉田县| 神木县| 荔波县| 德安县| 西贡区| 韶山市| 渭源县| 当阳市| 金门县| 博客| 哈尔滨市| 蓬安县| 蛟河市|