91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

Python如何實現圖像去噪方式

發布時間:2021-03-24 11:04:16 來源:億速云 閱讀:1391 作者:小新 欄目:開發技術

這篇文章將為大家詳細講解有關Python如何實現圖像去噪方式,小編覺得挺實用的,因此分享給大家做個參考,希望大家閱讀完這篇文章后可以有所收獲。

實現對圖像進行簡單的高斯去噪和椒鹽去噪。

代碼如下:

import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import random
import scipy.misc
import scipy.signal
import scipy.ndimage
from matplotlib.font_manager import FontProperties
font_set = FontProperties(fname=r"c:\windows\fonts\simsun.ttc", size=10)
 
def medium_filter(im, x, y, step):
  sum_s = []
  for k in range(-int(step / 2), int(step / 2) + 1):
    for m in range(-int(step / 2), int(step / 2) + 1):
      sum_s.append(im[x + k][y + m])
  sum_s.sort()
  return sum_s[(int(step * step / 2) + 1)]
 
 
def mean_filter(im, x, y, step):
  sum_s = 0
  for k in range(-int(step / 2), int(step / 2) + 1):
    for m in range(-int(step / 2), int(step / 2) + 1):
      sum_s += im[x + k][y + m] / (step * step)
  return sum_s
 
 
def convert_2d(r):
  n = 3
  # 3*3 濾波器, 每個系數都是 1/9
  window = np.ones((n, n)) / n ** 2
  # 使用濾波器卷積圖像
  # mode = same 表示輸出尺寸等于輸入尺寸
  # boundary 表示采用對稱邊界條件處理圖像邊緣
  s = scipy.signal.convolve2d(r, window, mode='same', boundary='symm')
  return s.astype(np.uint8)
 
 
def convert_3d(r):
  s_dsplit = []
  for d in range(r.shape[2]):
    rr = r[:, :, d]
    ss = convert_2d(rr)
    s_dsplit.append(ss)
  s = np.dstack(s_dsplit)
  return s
 
 
def add_salt_noise(img):
  rows, cols, dims = img.shape
  R = np.mat(img[:, :, 0])
  G = np.mat(img[:, :, 1])
  B = np.mat(img[:, :, 2])
 
  Grey_sp = R * 0.299 + G * 0.587 + B * 0.114
  Grey_gs = R * 0.299 + G * 0.587 + B * 0.114
 
  snr = 0.9
 
  noise_num = int((1 - snr) * rows * cols)
 
  for i in range(noise_num):
    rand_x = random.randint(0, rows - 1)
    rand_y = random.randint(0, cols - 1)
    if random.randint(0, 1) == 0:
      Grey_sp[rand_x, rand_y] = 0
    else:
      Grey_sp[rand_x, rand_y] = 255
  #給圖像加入高斯噪聲
  Grey_gs = Grey_gs + np.random.normal(0, 48, Grey_gs.shape)
  Grey_gs = Grey_gs - np.full(Grey_gs.shape, np.min(Grey_gs))
  Grey_gs = Grey_gs * 255 / np.max(Grey_gs)
  Grey_gs = Grey_gs.astype(np.uint8)
 
  # 中值濾波
  Grey_sp_mf = scipy.ndimage.median_filter(Grey_sp, (7, 7))
  Grey_gs_mf = scipy.ndimage.median_filter(Grey_gs, (8, 8))
 
  # 均值濾波
  Grey_sp_me = convert_2d(Grey_sp)
  Grey_gs_me = convert_2d(Grey_gs)
 
  plt.subplot(321)
  plt.title('加入椒鹽噪聲',fontproperties=font_set)
  plt.imshow(Grey_sp, cmap='gray')
  plt.subplot(322)
  plt.title('加入高斯噪聲',fontproperties=font_set)
  plt.imshow(Grey_gs, cmap='gray')
 
  plt.subplot(323)
  plt.title('中值濾波去椒鹽噪聲(8*8)',fontproperties=font_set)
  plt.imshow(Grey_sp_mf, cmap='gray')
  plt.subplot(324)
  plt.title('中值濾波去高斯噪聲(8*8)',fontproperties=font_set)
  plt.imshow(Grey_gs_mf, cmap='gray')
 
  plt.subplot(325)
  plt.title('均值濾波去椒鹽噪聲',fontproperties=font_set)
  plt.imshow(Grey_sp_me, cmap='gray')
  plt.subplot(326)
  plt.title('均值濾波去高斯噪聲',fontproperties=font_set)
  plt.imshow(Grey_gs_me, cmap='gray')
  plt.show()
 
 
def main():
  img = np.array(Image.open('E:/pycharm/GraduationDesign/Test/testthree.png'))
  add_salt_noise(img)
 
 
if __name__ == '__main__':
  main()

效果如下

Python如何實現圖像去噪方式

關于“Python如何實現圖像去噪方式”這篇文章就分享到這里了,希望以上內容可以對大家有一定的幫助,使各位可以學到更多知識,如果覺得文章不錯,請把它分享出去讓更多的人看到。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

奉贤区| 准格尔旗| 济源市| 邢台市| 拉萨市| 盐边县| 包头市| 斗六市| 聂荣县| 滦南县| 东阳市| 丘北县| 海淀区| 长岛县| 蒙山县| 申扎县| 古浪县| 连江县| 南安市| 防城港市| 临洮县| 宁晋县| 佛教| 琼中| 天峨县| 威海市| 鸡西市| 定襄县| 武乡县| 新源县| 监利县| 鸡泽县| 饶平县| 茂名市| 乌兰察布市| 建水县| 宁武县| 昭觉县| 丽水市| 桂平市| 紫阳县|