91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

python保存log日志,實現用log日志畫圖

發布時間:2020-10-24 16:31:16 來源:腳本之家 閱讀:262 作者:xiaotao_1 欄目:開發技術

在神經網絡訓練中,我們常常需要畫出loss function的變化圖,log日志里會顯示每一次迭代的loss function的值,于是我們先把log日志保存為log.txt文檔,再利用這個文檔來畫圖。   

1,先來產生一個log日志。

import mxnet as mx
import numpy as np
import os
import logging
logging.getLogger().setLevel(logging.DEBUG)

# Training data
logging.basicConfig(filename = os.path.join(os.getcwd(), 'log.txt'), level = logging.DEBUG) # 把log日志保存為log.txt
train_data = np.random.uniform(0, 1, [100, 2])
train_label = np.array([train_data[i][0] + 2 * train_data[i][1] for i in range(100)])
batch_size = 1
num_epoch=5
# Evaluation Data
eval_data = np.array([[7,2],[6,10],[12,2]])
eval_label = np.array([11,26,16])
train_iter = mx.io.NDArrayIter(train_data,train_label, batch_size, shuffle=True,label_name='lin_reg_label')
eval_iter = mx.io.NDArrayIter(eval_data, eval_label, batch_size, shuffle=False)
X = mx.sym.Variable('data')
Y = mx.sym.Variable('lin_reg_label')
fully_connected_layer = mx.sym.FullyConnected(data=X, name='fc1', num_hidden = 1)
lro = mx.sym.LinearRegressionOutput(data=fully_connected_layer, label=Y, name="lro")
model = mx.mod.Module(
  symbol = lro ,
  data_names=['data'],
  label_names = ['lin_reg_label'] # network structure
)
model.fit(train_iter, eval_iter,
      optimizer_params={'learning_rate':0.005, 'momentum': 0.9},
      num_epoch=20,
      eval_metric='mse',)
model.predict(eval_iter).asnumpy()
metric = mx.metric.MSE()
model.score(eval_iter, metric)

上面的代碼中logging.basicConfig(filename = os.path.join(os.getcwd(), 'log.txt'), level = logging.DEBUG) # 把log日志保存為log.txt 就是把log日志保存為log.txt文件。   

2,log.txt文檔如下。

INFO:root:Epoch[0] Train-mse=0.470638
INFO:root:Epoch[0] Time cost=0.047
INFO:root:Epoch[0] Validation-mse=73.642301
INFO:root:Epoch[1] Train-mse=0.082987
INFO:root:Epoch[1] Time cost=0.047
INFO:root:Epoch[1] Validation-mse=41.625072
INFO:root:Epoch[2] Train-mse=0.044817
INFO:root:Epoch[2] Time cost=0.063
INFO:root:Epoch[2] Validation-mse=23.743375
INFO:root:Epoch[3] Train-mse=0.024459
INFO:root:Epoch[3] Time cost=0.063
INFO:root:Epoch[3] Validation-mse=13.511120
INFO:root:Epoch[4] Train-mse=0.013431
INFO:root:Epoch[4] Time cost=0.063
INFO:root:Epoch[4] Validation-mse=7.670062
INFO:root:Epoch[5] Train-mse=0.007408
INFO:root:Epoch[5] Time cost=0.063
INFO:root:Epoch[5] Validation-mse=4.344374
INFO:root:Epoch[6] Train-mse=0.004099
INFO:root:Epoch[6] Time cost=0.063
INFO:root:Epoch[6] Validation-mse=2.455608
INFO:root:Epoch[7] Train-mse=0.002274
INFO:root:Epoch[7] Time cost=0.062
INFO:root:Epoch[7] Validation-mse=1.385449
INFO:root:Epoch[8] Train-mse=0.001263
INFO:root:Epoch[8] Time cost=0.063
INFO:root:Epoch[8] Validation-mse=0.780387
INFO:root:Epoch[9] Train-mse=0.000703
INFO:root:Epoch[9] Time cost=0.063
INFO:root:Epoch[9] Validation-mse=0.438943
INFO:root:Epoch[10] Train-mse=0.000391
INFO:root:Epoch[10] Time cost=0.125
INFO:root:Epoch[10] Validation-mse=0.246581
INFO:root:Epoch[11] Train-mse=0.000218
INFO:root:Epoch[11] Time cost=0.047
INFO:root:Epoch[11] Validation-mse=0.138368
INFO:root:Epoch[12] Train-mse=0.000121
INFO:root:Epoch[12] Time cost=0.047
INFO:root:Epoch[12] Validation-mse=0.077573
INFO:root:Epoch[13] Train-mse=0.000068
INFO:root:Epoch[13] Time cost=0.063
INFO:root:Epoch[13] Validation-mse=0.043454
INFO:root:Epoch[14] Train-mse=0.000038
INFO:root:Epoch[14] Time cost=0.063
INFO:root:Epoch[14] Validation-mse=0.024325
INFO:root:Epoch[15] Train-mse=0.000021
INFO:root:Epoch[15] Time cost=0.063
INFO:root:Epoch[15] Validation-mse=0.013609
INFO:root:Epoch[16] Train-mse=0.000012
INFO:root:Epoch[16] Time cost=0.063
INFO:root:Epoch[16] Validation-mse=0.007610
INFO:root:Epoch[17] Train-mse=0.000007
INFO:root:Epoch[17] Time cost=0.063
INFO:root:Epoch[17] Validation-mse=0.004253
INFO:root:Epoch[18] Train-mse=0.000004
INFO:root:Epoch[18] Time cost=0.063
INFO:root:Epoch[18] Validation-mse=0.002376
INFO:root:Epoch[19] Train-mse=0.000002
INFO:root:Epoch[19] Time cost=0.063
INFO:root:Epoch[19] Validation-mse=0.001327

3,利用log.txt文件來畫圖。

import re
import matplotlib.pyplot as plt
import numpy as np


def main():
  file = open('log.txt','r')
  list = []
  # search the line including accuracy
  for line in file:
    m=re.search('Train-mse', line)
    if m:
      n=re.search('[0]\.[0-9]+', line) # 正則表達式
      if n is not None:
        list.append(n.group()) # 提取精度數字
  file.close()
  plt.plot(list, 'go')
  plt.plot(list, 'r')
  plt.xlabel('count')
  plt.ylabel('accuracy')
  plt.title('Accuracy')
  plt.show()

if __name__ == '__main__':
  main()

以上這篇python保存log日志,實現用log日志來畫圖就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持億速云。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

沙坪坝区| 宜州市| 邵武市| 松桃| 临洮县| 沙坪坝区| 屯昌县| 芦山县| 天长市| 宜兰县| 上林县| 柏乡县| 桐柏县| 乐东| 龙泉市| 阿坝县| 鲜城| 郎溪县| 阳东县| 玉溪市| 岗巴县| 台东市| 太仓市| 安仁县| 邵阳县| 阜南县| 阿拉善盟| 怀安县| 正安县| 铜梁县| 芜湖县| 夏河县| 新兴县| 长子县| 夏津县| 张北县| 克什克腾旗| 泰安市| 高雄市| 双牌县| 宝坻区|