您好,登錄后才能下訂單哦!
這篇文章主要為大家展示了“PyTorch如何實現對應點相乘、矩陣相乘”,內容簡而易懂,條理清晰,希望能夠幫助大家解決疑惑,下面讓小編帶領大家一起研究并學習一下“PyTorch如何實現對應點相乘、矩陣相乘”這篇文章吧。
一,對應點相乘,x.mul(y) ,即點乘操作,點乘不求和操作,又可以叫作Hadamard product;點乘再求和,即為卷積
data = [[1,2], [3,4], [5, 6]] tensor = torch.FloatTensor(data) tensor Out[27]: tensor([[ 1., 2.], [ 3., 4.], [ 5., 6.]]) tensor.mul(tensor) Out[28]: tensor([[ 1., 4.], [ 9., 16.], [ 25., 36.]])
二,矩陣相乘,x.mm(y) , 矩陣大小需滿足: (i, n)x(n, j)
tensor Out[31]: tensor([[ 1., 2.], [ 3., 4.], [ 5., 6.]]) tensor.mm(tensor.t()) # t()是轉置 Out[30]: tensor([[ 5., 11., 17.], [ 11., 25., 39.], [ 17., 39., 61.]])
以上是“PyTorch如何實現對應點相乘、矩陣相乘”這篇文章的所有內容,感謝各位的閱讀!相信大家都有了一定的了解,希望分享的內容對大家有所幫助,如果還想學習更多知識,歡迎關注億速云行業資訊頻道!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。