91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

pytorch如何求網絡模型參數

發布時間:2021-08-25 09:15:16 來源:億速云 閱讀:163 作者:小新 欄目:開發技術

這篇文章給大家分享的是有關pytorch如何求網絡模型參數的內容。小編覺得挺實用的,因此分享給大家做個參考,一起跟隨小編過來看看吧。

一 .求得每一層的模型參數,然后自然的可以計算出總的參數。

1.先初始化一個網絡模型model

比如我這里是 model=cliqueNet(里面是些初始化的參數)

2.調用model的Parameters類獲取參數列表

pytorch如何求網絡模型參數

一個典型的操作就是將參數列表傳入優化器里。如下

 optimizer = optim.Adam(model.parameters(), lr=opt.lr)

言歸正傳,繼續回到參數里面,參數在網絡里面就是variable,下面分別求每層的尺寸大小和個數。

函數get_number_of_param( ) 里面的參數就是剛才第一步初始化的model

def get_number_of_param(model):
  """get the number of param for every element"""
  count = 0
  for param in model.parameters():
    param_size = param.size()
    count_of_one_param = 1
    for dis in param_size:
      count_of_one_param *= dis
    print(param.size(), count_of_one_param)
    count += count_of_one_param
    print(count)
  print('total number of the model is %d'%count)

再來看看結果:

torch.Size([64, 1, 3, 3]) 576
576
torch.Size([64]) 64
640
torch.Size([6, 36, 64, 3, 3]) 124416
125056
torch.Size([30, 36, 36, 3, 3]) 349920
474976
torch.Size([12, 36]) 432
475408
torch.Size([6, 36, 216, 3, 3]) 419904
895312
torch.Size([30, 36, 36, 3, 3]) 349920
1245232
torch.Size([12, 36]) 432
1245664
torch.Size([6, 36, 216, 3, 3]) 419904
1665568
torch.Size([30, 36, 36, 3, 3]) 349920
2015488
torch.Size([12, 36]) 432
2015920
torch.Size([6, 36, 216, 3, 3]) 419904
2435824
torch.Size([30, 36, 36, 3, 3]) 349920
2785744
torch.Size([12, 36]) 432
2786176
torch.Size([216, 216, 1, 1]) 46656
2832832
torch.Size([216]) 216
2833048
torch.Size([108, 216]) 23328
2856376
torch.Size([108]) 108
2856484
torch.Size([216, 108]) 23328
2879812
torch.Size([216]) 216
2880028
torch.Size([216, 216, 1, 1]) 46656
2926684
torch.Size([216]) 216
2926900
torch.Size([108, 216]) 23328
2950228
torch.Size([108]) 108
2950336
torch.Size([216, 108]) 23328
2973664
torch.Size([216]) 216
2973880
torch.Size([216, 216, 1, 1]) 46656
3020536
torch.Size([216]) 216
3020752
torch.Size([108, 216]) 23328
3044080
torch.Size([108]) 108
3044188
torch.Size([216, 108]) 23328
3067516
torch.Size([216]) 216
3067732
torch.Size([140, 280, 1, 1]) 39200
3106932
torch.Size([140]) 140
3107072
torch.Size([216, 432, 1, 1]) 93312
3200384
torch.Size([216]) 216
3200600
torch.Size([216, 432, 1, 1]) 93312
3293912
torch.Size([216]) 216
3294128
torch.Size([9, 572, 3, 3]) 46332
3340460
torch.Size([9]) 9
3340469
total number of the model is 3340469

可以通過計算驗證一下,發現參數與網絡是一致的。

二:一行代碼就可以搞定參數總個數問題

2.1 先來看看torch.tensor.numel( )這個函數的功能就是求tensor中的元素個數,在網絡里面每層參數就是多維數組組成的tensor。

實際上就是求多維數組的元素個數。看代碼。

print('cliqueNet parameters:', sum(param.numel() for param in model.parameters()))

當然上面代碼中的model還是上面初始化的網絡模型。

看看兩種的計算結果

torch.Size([64, 1, 3, 3]) 576
576
torch.Size([64]) 64
640
torch.Size([6, 36, 64, 3, 3]) 124416
125056
torch.Size([30, 36, 36, 3, 3]) 349920
474976
torch.Size([12, 36]) 432
475408
torch.Size([6, 36, 216, 3, 3]) 419904
895312
torch.Size([30, 36, 36, 3, 3]) 349920
1245232
torch.Size([12, 36]) 432
1245664
torch.Size([6, 36, 216, 3, 3]) 419904
1665568
torch.Size([30, 36, 36, 3, 3]) 349920
2015488
torch.Size([12, 36]) 432
2015920
torch.Size([6, 36, 216, 3, 3]) 419904
2435824
torch.Size([30, 36, 36, 3, 3]) 349920
2785744
torch.Size([12, 36]) 432
2786176
torch.Size([216, 216, 1, 1]) 46656
2832832
torch.Size([216]) 216
2833048
torch.Size([108, 216]) 23328
2856376
torch.Size([108]) 108
2856484
torch.Size([216, 108]) 23328
2879812
torch.Size([216]) 216
2880028
torch.Size([216, 216, 1, 1]) 46656
2926684
torch.Size([216]) 216
2926900
torch.Size([108, 216]) 23328
2950228
torch.Size([108]) 108
2950336
torch.Size([216, 108]) 23328
2973664
torch.Size([216]) 216
2973880
torch.Size([216, 216, 1, 1]) 46656
3020536
torch.Size([216]) 216
3020752
torch.Size([108, 216]) 23328
3044080
torch.Size([108]) 108
3044188
torch.Size([216, 108]) 23328
3067516
torch.Size([216]) 216
3067732
torch.Size([140, 280, 1, 1]) 39200
3106932
torch.Size([140]) 140
3107072
torch.Size([216, 432, 1, 1]) 93312
3200384
torch.Size([216]) 216
3200600
torch.Size([216, 432, 1, 1]) 93312
3293912
torch.Size([216]) 216
3294128
torch.Size([9, 572, 3, 3]) 46332
3340460
torch.Size([9]) 9
3340469
total number of the model is 3340469
cliqueNet parameters: 3340469

可以看出兩種計算出來的是一模一樣的。

感謝各位的閱讀!關于“pytorch如何求網絡模型參數”這篇文章就分享到這里了,希望以上內容可以對大家有一定的幫助,讓大家可以學到更多知識,如果覺得文章不錯,可以把它分享出去讓更多的人看到吧!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

武邑县| 黎平县| 中阳县| 临高县| 遵化市| 万州区| 杭锦后旗| 新疆| 兴隆县| 新兴县| 克东县| 古蔺县| 康马县| 乐清市| 田阳县| 利川市| 冷水江市| 怀柔区| 永和县| 桂东县| 福贡县| 临洮县| 吉木萨尔县| 庆元县| 广宁县| 昆山市| 香港| 高雄县| 乳源| 万山特区| 资源县| 玉山县| 讷河市| 潼关县| 宾阳县| 常山县| 霍城县| 博白县| 白沙| 修水县| 镇坪县|