91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

如何在Pytorch中使用DataLoader的collate_fn參數

發布時間:2021-03-22 16:47:38 來源:億速云 閱讀:479 作者:Leah 欄目:開發技術

這篇文章將為大家詳細講解有關如何在Pytorch中使用DataLoader的collate_fn參數,文章內容質量較高,因此小編分享給大家做個參考,希望大家閱讀完這篇文章后對相關知識有一定的了解。

DataLoader完整的參數表如下:

class torch.utils.data.DataLoader(
 dataset,
 batch_size=1,
 shuffle=False,
 sampler=None,
 batch_sampler=None,
 num_workers=0,
 collate_fn=<function default_collate>,
 pin_memory=False,
 drop_last=False,
 timeout=0,
 worker_init_fn=None)

DataLoader在數據集上提供單進程或多進程的迭代器

幾個關鍵的參數意思:

- shuffle:設置為True的時候,每個世代都會打亂數據集

- collate_fn:如何取樣本的,我們可以定義自己的函數來準確地實現想要的功能

- drop_last:告訴如何處理數據集長度除于batch_size余下的數據。True就拋棄,否則保留

一個測試的例子

import torch
import torch.utils.data as Data
import numpy as np

test = np.array([0,1,2,3,4,5,6,7,8,9,10,11])

inputing = torch.tensor(np.array([test[i:i + 3] for i in range(10)]))
target = torch.tensor(np.array([test[i:i + 1] for i in range(10)]))

torch_dataset = Data.TensorDataset(inputing,target)
batch = 3

loader = Data.DataLoader(
 dataset=torch_dataset,
 batch_size=batch, # 批大小
 # 若dataset中的樣本數不能被batch_size整除的話,最后剩余多少就使用多少
 collate_fn=lambda x:(
  torch.cat(
   [x[i][j].unsqueeze(0) for i in range(len(x))], 0
   ).unsqueeze(0) for j in range(len(x[0]))
  )
 )

for (i,j) in loader:
 print(i)
 print(j)

輸出結果:

tensor([[[ 0, 1, 2],
   [ 1, 2, 3],
   [ 2, 3, 4]]], dtype=torch.int32)
tensor([[[ 0],
   [ 1],
   [ 2]]], dtype=torch.int32)
tensor([[[ 3, 4, 5],
   [ 4, 5, 6],
   [ 5, 6, 7]]], dtype=torch.int32)
tensor([[[ 3],
   [ 4],
   [ 5]]], dtype=torch.int32)
tensor([[[ 6, 7, 8],
   [ 7, 8, 9],
   [ 8, 9, 10]]], dtype=torch.int32)
tensor([[[ 6],
   [ 7],
   [ 8]]], dtype=torch.int32)
tensor([[[ 9, 10, 11]]], dtype=torch.int32)
tensor([[[ 9]]], dtype=torch.int32)

如果不要collate_fn的值,輸出變成

tensor([[ 0, 1, 2],
  [ 1, 2, 3],
  [ 2, 3, 4]], dtype=torch.int32)
tensor([[ 0],
  [ 1],
  [ 2]], dtype=torch.int32)
tensor([[ 3, 4, 5],
  [ 4, 5, 6],
  [ 5, 6, 7]], dtype=torch.int32)
tensor([[ 3],
  [ 4],
  [ 5]], dtype=torch.int32)
tensor([[ 6, 7, 8],
  [ 7, 8, 9],
  [ 8, 9, 10]], dtype=torch.int32)
tensor([[ 6],
  [ 7],
  [ 8]], dtype=torch.int32)
tensor([[ 9, 10, 11]], dtype=torch.int32)
tensor([[ 9]], dtype=torch.int32)

所以collate_fn就是使結果多一維。

看看collate_fn的值是什么意思。我們把它改為如下

collate_fn=lambda x:x

并輸出

for i in loader:
 print(i)

得到結果

[(tensor([ 0, 1, 2], dtype=torch.int32), tensor([ 0], dtype=torch.int32)), (tensor([ 1, 2, 3], dtype=torch.int32), tensor([ 1], dtype=torch.int32)), (tensor([ 2, 3, 4], dtype=torch.int32), tensor([ 2], dtype=torch.int32))]
[(tensor([ 3, 4, 5], dtype=torch.int32), tensor([ 3], dtype=torch.int32)), (tensor([ 4, 5, 6], dtype=torch.int32), tensor([ 4], dtype=torch.int32)), (tensor([ 5, 6, 7], dtype=torch.int32), tensor([ 5], dtype=torch.int32))]
[(tensor([ 6, 7, 8], dtype=torch.int32), tensor([ 6], dtype=torch.int32)), (tensor([ 7, 8, 9], dtype=torch.int32), tensor([ 7], dtype=torch.int32)), (tensor([ 8, 9, 10], dtype=torch.int32), tensor([ 8], dtype=torch.int32))]
[(tensor([ 9, 10, 11], dtype=torch.int32), tensor([ 9], dtype=torch.int32))]

每個i都是一個列表,每個列表包含batch_size個元組,每個元組包含TensorDataset的單獨數據。所以要將重新組合成每個batch包含1*3*3的input和1*3*1的target,就要重新解包并打包。 看看我們的collate_fn:

collate_fn=lambda x:(
 torch.cat(
  [x[i][j].unsqueeze(0) for i in range(len(x))], 0
  ).unsqueeze(0) for j in range(len(x[0]))
 )

j取的是兩個變量:input和target。i取的是batch_size。然后通過unsqueeze(0)方法在前面加一維。torch.cat(,0)將其打包起來。然后再通過unsqueeze(0)方法在前面加一維。 完成。

關于如何在Pytorch中使用DataLoader的collate_fn參數就分享到這里了,希望以上內容可以對大家有一定的幫助,可以學到更多知識。如果覺得文章不錯,可以把它分享出去讓更多的人看到。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

古交市| 合作市| 伊金霍洛旗| 金秀| 岫岩| 渭源县| 张家界市| 惠来县| 新余市| 新河县| 桐梓县| 商河县| 军事| 无锡市| 龙川县| 时尚| 霍州市| 金昌市| 尚志市| 嘉善县| 淮滨县| 桃源县| 娱乐| 福贡县| 湾仔区| 甘肃省| 清镇市| 卢氏县| 新安县| 仙居县| 辽宁省| 阿坝| 易门县| 桐城市| 泽库县| 德安县| 新竹县| 鄢陵县| 广西| 新巴尔虎右旗| 伽师县|