您好,登錄后才能下訂單哦!
**
一 tf.concat( ) 函數–合并
**
In [2]: a = tf.ones([4,35,8]) In [3]: b = tf.ones([2,35,8]) In [4]: c = tf.concat([a,b],axis=0) In [5]: c.shape Out[5]: TensorShape([6, 35, 8]) In [6]: a = tf.ones([4,32,8]) In [7]: b = tf.ones([4,3,8]) In [8]: c = tf.concat([a,b],axis=1) In [9]: c.shape Out[9]: TensorShape([4, 35, 8])
**
二 tf.stack( ) 函數–數據的堆疊,創建新的維度
**
In [2]: a = tf.ones([4,35,8]) In [3]: a.shape Out[3]: TensorShape([4, 35, 8]) In [4]: b = tf.ones([4,35,8]) In [5]: b.shape Out[5]: TensorShape([4, 35, 8]) In [6]: tf.concat([a,b],axis=-1).shape Out[6]: TensorShape([4, 35, 16]) In [7]: tf.stack([a,b],axis=0).shape Out[7]: TensorShape([2, 4, 35, 8]) In [8]: tf.stack([a,b],axis=3).shape Out[8]: TensorShape([4, 35, 8, 2])
**
三 tf.unstack( )函數–解堆疊
**
In [16]: a = tf.ones([4,35,8]) In [17]: b = tf.ones([4,35,8]) In [18]: c = tf.stack([a,b],axis=0) In [19]: a.shape,b.shape,c.shape Out[19]: (TensorShape([4, 35, 8]), TensorShape([4, 35, 8]), TensorShape([2, 4, 35, 8])) In [20]: aa,bb = tf.unstack(c,axis=0) In [21]: aa.shape,bb.shape Out[21]: (TensorShape([4, 35, 8]), TensorShape([4, 35, 8])) In [22]: res = tf.unstack(c,axis=1) In [23]: len(res) Out[23]: 4
**
四 tf.split( ) 函數
**
In [16]: a = tf.ones([4,35,8]) In [17]: b = tf.ones([4,35,8]) In [18]: c = tf.stack([a,b],axis=0) In [19]: a.shape,b.shape,c.shape Out[19]: (TensorShape([4, 35, 8]), TensorShape([4, 35, 8]), TensorShape([2, 4, 35, 8])) In [20]: aa,bb = tf.unstack(c,axis=0) In [21]: aa.shape,bb.shape Out[21]: (TensorShape([4, 35, 8]), TensorShape([4, 35, 8])) In [22]: res = tf.unstack(c,axis=1) In [23]: len(res) Out[23]: 4
以上這篇TensorFlow2.0:張量的合并與分割實例就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持億速云。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。