91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

TensorFlow中常量、變量和運算操作的示例分析

發布時間:2021-06-17 14:24:24 來源:億速云 閱讀:189 作者:小新 欄目:開發技術

這篇文章主要介紹了TensorFlow中常量、變量和運算操作的示例分析,具有一定借鑒價值,感興趣的朋友可以參考下,希望大家閱讀完這篇文章之后大有收獲,下面讓小編帶著大家一起了解一下。

常量

tf.constant()

tf.constant(value, dtype=None, shape=None, name='Const', verify_shape=False),value為值,dtype類型,shape為張量形狀,name名稱、verify_shape默認False,這些項可選。作用創建一個常量。

a = tf.constant(2, name="a") # print(a) = 2
b = tf.constant(2.0, dtype=tf.float32, shape=[2,2], name="b") # 2x2矩陣,值為2
c = tf.constant([[1, 2], [3, 4]], name="c") # 2x2矩陣,值1,2,3,4

tf.zeros()和tf.zeros_like()

tf.zeros(shape, dtype=tf.float32, name=None), shape為張量形狀,dtype類型,name名稱。創建一個值為0的常量。

a = tf.zeros(shape=[2, 3], dtype=tf.int32, name='a') # 2x3矩陣,值為0, a = [[0, 0, 0], [0, 0, 0]]

tf.zeros_like(input_tensor, dtype=None, name=None, optimize=True),input_tensor為張量,dtype類型,name名稱,optimize優化。根據輸入張量創建一個值為0的張量,形狀和輸入張量相同。

input_tensor = tf.constant([[1,2], [3,4], [5,6])
a = tf.zeros_like(input_tensor) # a = [[0, 0], [0, 0], [0, 0]]

tf.ones()和tf.ones_like()

tf.ones(shape, dtype=tf.float32, name=None),與tf.zeros()類似。

tf.ones_like(input_tensor, dtype=None, name=None, optimize=True),與tf.zeros_like()類似。

tf.fill()

tf.fill(dims, value, name=None), dims為張量形狀,同上述shape,vlaue值,name名稱。作用是產生一個張量,用一個具體值充滿張量。

a = tf.fill([2,3], 8) # 2x3矩陣,值為8

tf.linspace()

tf.linspace(start, stop, num, name=None),start初始值,stop結束值,num數量,name名稱。作用是產生一個等差數列一維向量,個數是num,初始值start、結束值stop。

a = tf.linspace(10.0, 13.0, 4) # a = [10.0 11.0 12.0 13.0]

tf.range()

tf.range(start=0, limit=None, delta=1, dtype=None, name='range'),start初始值,limit限制,delta增量,dtype類型,name名稱。作用是產生一個等差數列的一維向量,初始值start,公差delta,結束值小于limit。

a = tf.range(start, limit, delta) # a = [3, 6, 9, 12, 15]
b = tf.range(5) # b = [0, 1, 2, 3, 4]

tf.random_normal()

tf.random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None), shape張量形狀,mean均值,stddev標準差,dtype類型,seed隨機種子,name名稱。作用是產生一個正太分布分布,均值為mean,標準差為stddev。

tf.truncated_normal()

tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None,name=None),shape張量形狀,mean均值,stddev標準差,dtype類型,seed隨機種子,name名稱。作用是產生一個截斷的正太分布,形狀為shape,均值為mean,標準差為stddev。

tf.random_uniform()

tf.random_uniform(shape, minval=0, maxval=None, dtype=tf.float32, seed=None,name=None),shape張量形狀,minval最小值,maxval最大值,dtype類型,seed隨機種子,name名稱。作用是產生一個均勻分布,形狀為shape,最小值為minval,最大值為maxval。

tf.random_shuffle()

tf.random_shuffle(value, seed=None, name=None),value張量,seed隨機種子,name名稱。作用是將張量value里面的值隨機打亂。

a = tf.constant([[1,2],[3,4]],name='a')
b = tf.random_shuffle(a, name='b') # b = [[2,3], [1,4]]

tf.random_crop()

tf.random_crop(value, size, seed=None, name=None),value張量,size大小,seed隨機種子,name名稱。作用是將張量value隨機裁剪成size形狀大小的張量,value形狀大小>=size。

tf.multinomial()

tf.multinomial(logits, num_samples, seed=None, name=None), logits張量,num_samples采樣輸出,seed隨機種子,name名稱。作用是根據概率分布的大小,隨機返回對應維度的下標序號。

a = tf.constant([[1, 2, 3, 4, 1], [3, 2, 3, 4, 3]], name='a')
b = tf.multinomial(a, 1, name='b') # b = [0, 0]或者[0, 2]或者[4, 4]

tf.random_gamma()

tf.random_gamma(shape, alpha, beta=None, dtype=tf.float32, seed=None, name=None)。作用是產生一個Gamma分布。

變量

tf.Variable()

tf.Variable(<initial-value>, name=<optional-name>),變量可以根據直接賦值,如a、b、c,也可以根據構造函數賦值,如W、Z。

a = tf.Variable(2, name="scalar")
b = tf.Variable([2, 3], name="vector")
c = tf.Variable([[0, 1], [2, 3]], name="matrix")
W = tf.Variable(tf.zeros([784,10]), name="weights")
Z = tf.Variable(tf.random_normal([784, 10], mean=0, stddev=0.01), name="Z"

tf.Variable().initializer

1.全局變量初始化

init = tf.global_variables_initializer()
with tf.Session() as sess:
 sess.run(init)

2.指定變量初始化

W = tf.Variable(tf.truncated_normal([700, 10]))
with tf.Session() as sess:
 sess.run(W.initializer)
 print(W) # Tensor("Variable/read:0", shape=(700, 10), dtype=float32)

tf.Variable().eval()

返回變量值。

W = tf.Variable(tf.truncated_normal([700, 10]))
with tf.Session() as sess:
 sess.run(W.initializer) 
 print(W.eval())
>> [[-0.76781619 -0.67020458 1.15333688 ..., -0.98434633 -1.25692499 -0.90904623]
 [-0.36763489 -0.65037876 -1.52936983 ..., 0.19320194 -0.38379928
 0.44387451]
 [ 0.12510735 -0.82649058 0.4321366 ..., -0.3816964 0.70466036
 1.33211911]
 ...,
 [ 0.9203397 -0.99590844 0.76853162 ..., -0.74290705 0.37568584
 0.64072722]
 [-0.12753558 0.52571583 1.03265858 ..., 0.59978199 -0.91293705
 -0.02646019]
 [ 0.19076447 -0.62968266 -1.97970271 ..., -1.48389161 0.68170643

tf.Variable.assign()

直接調用assign()并不起作用,它是一個操作,需要sess.run()操作才能起效果。

W = tf.Variable(10)
W.assign(100)
with tf.Session() as sess:
 sess.run(W.initializer)
 print(W.eval()) # >> 10
W = tf.Variable(10)
assign_op = W.assign(100)
with tf.Session() as sess:
 # sess.run(W.initializer) # 當變量有值的話,可以省略,不需要初始化
 sess.run(assign_op)
print W.eval() # >> 100

運算操作

運算操作圖

TensorFlow中常量、變量和運算操作的示例分析

tf.multiply()和tf.matmul()

tf.multiply(x, y, name)作用是x, y逐項相乘。

tf.matmul(x, y, name)作用是x,y矩陣相乘。

a = tf.constant([3, 6])
b = tf.constant([2, 2])
c1 = tf.matmul(a, b) # 報錯
c2 = tf.matmul(tf.reshape(a, [1, 2]), tf.reshape(b, [2, 1]))# c2 = [[18]]
c3 = tf.multiply(a, b) # c3 = [6, 12]

加減就不細說了。

感謝你能夠認真閱讀完這篇文章,希望小編分享的“TensorFlow中常量、變量和運算操作的示例分析”這篇文章對大家有幫助,同時也希望大家多多支持億速云,關注億速云行業資訊頻道,更多相關知識等著你來學習!

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

岢岚县| 岳普湖县| 缙云县| 桃园县| 固阳县| 建平县| 郎溪县| 山西省| 伊宁县| 泌阳县| 东台市| 福贡县| 长泰县| 普兰县| 新巴尔虎左旗| 盘锦市| 惠水县| 天台县| 钦州市| 长丰县| 郯城县| 康定县| 吐鲁番市| 凤翔县| 新宾| 新疆| 西丰县| 三河市| 花莲市| 瓮安县| 华容县| 茂名市| 岢岚县| 宝兴县| 富阳市| 马公市| 柘城县| 青河县| 清新县| 皋兰县| 巴中市|