您好,登錄后才能下訂單哦!
一、gfile模塊是什么
gfile模塊定義在tensorflow/python/platform/gfile.py,但其源代碼實現主要位于tensorflow/tensorflow/python/lib/io/file_io.py,那么gfile模塊主要功能是什么呢?
google上的定義為:
翻譯過來為:
沒有線程鎖的文件I / O操作包裝器
...對于TensorFlow的tf.gfile模塊來說是一個特別無用的描述!
tf.gfile模塊的主要角色是:
1.提供一個接近Python文件對象的API,以及
2.提供基于TensorFlow C ++ FileSystem API的實現。
C ++ FileSystem API支持多種文件系統實現,包括本地文件,谷歌云存儲(以gs://開頭)和HDFS(以hdfs:/開頭)。 TensorFlow將它們導出為tf.gfile,以便我們可以使用這些實現來保存和加載檢查點,編寫TensorBoard log以及訪問訓練數據(以及其他用途)。但是,如果所有文件都是本地文件,則可以使用常規的Python文件API而不會造成任何問題。
以上為google對tf.gfile的說明。
二、gfile API介紹
下面將分別介紹每一個gfile API!
2-1)tf.gfile.Copy(oldpath, newpath, overwrite=False)
拷貝源文件并創建目標文件,無返回,其形參說明如下:
oldpath:帶路徑名字的拷貝源文件;
newpath:帶路徑名字的拷貝目標文件;
overwrite:目標文件已經存在時是否要覆蓋,默認為false,如果目標文件已經存在則會報錯
2-2)tf.gfile.MkDir(dirname)
創建一個目錄,dirname為目錄名字,無返回。
2-3)tf.gfile.Remove(filename)
刪除文件,filename即文件名,無返回。
2-4)tf.gfile.DeleteRecursively(dirname)
遞歸刪除所有目錄及其文件,dirname即目錄名,無返回。
2-5)tf.gfile.Exists(filename)
判斷目錄或文件是否存在,filename可為目錄路徑或帶文件名的路徑,有該目錄則返回True,否則False。
2-6)tf.gfile.Glob(filename)
查找匹配pattern的文件并以列表的形式返回,filename可以是一個具體的文件名,也可以是包含通配符的正則表達式。
2-7)tf.gfile.IsDirectory(dirname)
判斷所給目錄是否存在,如果存在則返回True,否則返回False,dirname是目錄名。
2-8)tf.gfile.ListDirectory(dirname)
羅列dirname目錄下的所有文件并以列表形式返回,dirname必須是目錄名。
2-9)tf.gfile.MakeDirs(dirname)
以遞歸方式建立父目錄及其子目錄,如果目錄已存在且是可覆蓋則會創建成功,否則報錯,無返回。
2-10)tf.gfile.Rename(oldname, newname, overwrite=False)
重命名或移動一個文件或目錄,無返回,其形參說明如下:
oldname:舊目錄或舊文件;
newname:新目錄或新文件;
overwrite:默認為false,如果新目錄或新文件已經存在則會報錯,否則重命名或移動成功。
2-11)tf.gfile.Stat(filename)
返回目錄的統計數據,該函數會返回FileStatistics數據結構,以dir(tf.gfile.Stat(filename))獲取返回數據的屬性如下:
2-12)tf.gfile.Walk(top, in_order=True)
遞歸獲取目錄信息生成器,top是目錄名,in_order默認為True指示順序遍歷目錄,否則將無序遍歷,每次生成返回如下格式信息(dirname, [subdirname, subdirname, ...], [filename, filename, ...])。
2-13)tf.gfile.GFile(filename, mode)
獲取文本操作句柄,類似于python提供的文本操作open()函數,filename是要打開的文件名,mode是以何種方式去讀寫,將會返回一個文本操作句柄。
tf.gfile.Open()是該接口的同名,可任意使用其中一個!
2-14)tf.gfile.FastGFile(filename, mode)
該函數與tf.gfile.GFile的差別僅僅在于“無阻塞”,即該函數會無阻賽以較快的方式獲取文本操作句柄。
三、API源碼
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """File IO methods that wrap the C++ FileSystem API. The C++ FileSystem API is SWIG wrapped in file_io.i. These functions call those to accomplish basic File IO operations. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import uuid import six from tensorflow.python import pywrap_tensorflow from tensorflow.python.framework import c_api_util from tensorflow.python.framework import errors from tensorflow.python.util import compat from tensorflow.python.util import deprecation from tensorflow.python.util.tf_export import tf_export class FileIO(object): """FileIO class that exposes methods to read / write to / from files. The constructor takes the following arguments: name: name of the file mode: one of 'r', 'w', 'a', 'r+', 'w+', 'a+'. Append 'b' for bytes mode. Can be used as an iterator to iterate over lines in the file. The default buffer size used for the BufferedInputStream used for reading the file line by line is 1024 * 512 bytes. """ def __init__(self, name, mode): self.__name = name self.__mode = mode self._read_buf = None self._writable_file = None self._binary_mode = "b" in mode mode = mode.replace("b", "") if mode not in ("r", "w", "a", "r+", "w+", "a+"): raise errors.InvalidArgumentError( None, None, "mode is not 'r' or 'w' or 'a' or 'r+' or 'w+' or 'a+'") self._read_check_passed = mode in ("r", "r+", "a+", "w+") self._write_check_passed = mode in ("a", "w", "r+", "a+", "w+") @property def name(self): """Returns the file name.""" return self.__name @property def mode(self): """Returns the mode in which the file was opened.""" return self.__mode def _preread_check(self): if not self._read_buf: if not self._read_check_passed: raise errors.PermissionDeniedError(None, None, "File isn't open for reading") with errors.raise_exception_on_not_ok_status() as status: self._read_buf = pywrap_tensorflow.CreateBufferedInputStream( compat.as_bytes(self.__name), 1024 * 512, status) def _prewrite_check(self): if not self._writable_file: if not self._write_check_passed: raise errors.PermissionDeniedError(None, None, "File isn't open for writing") with errors.raise_exception_on_not_ok_status() as status: self._writable_file = pywrap_tensorflow.CreateWritableFile( compat.as_bytes(self.__name), compat.as_bytes(self.__mode), status) def _prepare_value(self, val): if self._binary_mode: return compat.as_bytes(val) else: return compat.as_str_any(val) def size(self): """Returns the size of the file.""" return stat(self.__name).length def write(self, file_content): """Writes file_content to the file. Appends to the end of the file.""" self._prewrite_check() with errors.raise_exception_on_not_ok_status() as status: pywrap_tensorflow.AppendToFile( compat.as_bytes(file_content), self._writable_file, status) def read(self, n=-1): """Returns the contents of a file as a string. Starts reading from current position in file. Args: n: Read 'n' bytes if n != -1. If n = -1, reads to end of file. Returns: 'n' bytes of the file (or whole file) in bytes mode or 'n' bytes of the string if in string (regular) mode. """ self._preread_check() with errors.raise_exception_on_not_ok_status() as status: if n == -1: length = self.size() - self.tell() else: length = n return self._prepare_value( pywrap_tensorflow.ReadFromStream(self._read_buf, length, status)) @deprecation.deprecated_args( None, "position is deprecated in favor of the offset argument.", "position") def seek(self, offset=None, whence=0, position=None): # TODO(jhseu): Delete later. Used to omit `position` from docs. # pylint: disable=g-doc-args """Seeks to the offset in the file. Args: offset: The byte count relative to the whence argument. whence: Valid values for whence are: 0: start of the file (default) 1: relative to the current position of the file 2: relative to the end of file. offset is usually negative. """ # pylint: enable=g-doc-args self._preread_check() # We needed to make offset a keyword argument for backwards-compatibility. # This check exists so that we can convert back to having offset be a # positional argument. # TODO(jhseu): Make `offset` a positional argument after `position` is # deleted. if offset is None and position is None: raise TypeError("seek(): offset argument required") if offset is not None and position is not None: raise TypeError("seek(): offset and position may not be set " "simultaneously.") if position is not None: offset = position with errors.raise_exception_on_not_ok_status() as status: if whence == 0: pass elif whence == 1: offset += self.tell() elif whence == 2: offset += self.size() else: raise errors.InvalidArgumentError( None, None, "Invalid whence argument: {}. Valid values are 0, 1, or 2." .format(whence)) ret_status = self._read_buf.Seek(offset) pywrap_tensorflow.Set_TF_Status_from_Status(status, ret_status) def readline(self): r"""Reads the next line from the file. Leaves the '\n' at the end.""" self._preread_check() return self._prepare_value(self._read_buf.ReadLineAsString()) def readlines(self): """Returns all lines from the file in a list.""" self._preread_check() lines = [] while True: s = self.readline() if not s: break lines.append(s) return lines def tell(self): """Returns the current position in the file.""" self._preread_check() return self._read_buf.Tell() def __enter__(self): """Make usable with "with" statement.""" return self def __exit__(self, unused_type, unused_value, unused_traceback): """Make usable with "with" statement.""" self.close() def __iter__(self): return self def next(self): retval = self.readline() if not retval: raise StopIteration() return retval def __next__(self): return self.next() def flush(self): """Flushes the Writable file. This only ensures that the data has made its way out of the process without any guarantees on whether it's written to disk. This means that the data would survive an application crash but not necessarily an OS crash. """ if self._writable_file: with errors.raise_exception_on_not_ok_status() as status: ret_status = self._writable_file.Flush() pywrap_tensorflow.Set_TF_Status_from_Status(status, ret_status) def close(self): """Closes FileIO. Should be called for the WritableFile to be flushed.""" self._read_buf = None if self._writable_file: with errors.raise_exception_on_not_ok_status() as status: ret_status = self._writable_file.Close() pywrap_tensorflow.Set_TF_Status_from_Status(status, ret_status) self._writable_file = None @tf_export("gfile.Exists") def file_exists(filename): """Determines whether a path exists or not. Args: filename: string, a path Returns: True if the path exists, whether its a file or a directory. False if the path does not exist and there are no filesystem errors. Raises: errors.OpError: Propagates any errors reported by the FileSystem API. """ try: with errors.raise_exception_on_not_ok_status() as status: pywrap_tensorflow.FileExists(compat.as_bytes(filename), status) except errors.NotFoundError: return False return True @tf_export("gfile.Remove") def delete_file(filename): """Deletes the file located at 'filename'. Args: filename: string, a filename Raises: errors.OpError: Propagates any errors reported by the FileSystem API. E.g., NotFoundError if the file does not exist. """ with errors.raise_exception_on_not_ok_status() as status: pywrap_tensorflow.DeleteFile(compat.as_bytes(filename), status) def read_file_to_string(filename, binary_mode=False): """Reads the entire contents of a file to a string. Args: filename: string, path to a file binary_mode: whether to open the file in binary mode or not. This changes the type of the object returned. Returns: contents of the file as a string or bytes. Raises: errors.OpError: Raises variety of errors that are subtypes e.g. NotFoundError etc. """ if binary_mode: f = FileIO(filename, mode="rb") else: f = FileIO(filename, mode="r") return f.read() def write_string_to_file(filename, file_content): """Writes a string to a given file. Args: filename: string, path to a file file_content: string, contents that need to be written to the file Raises: errors.OpError: If there are errors during the operation. """ with FileIO(filename, mode="w") as f: f.write(file_content) @tf_export("gfile.Glob") def get_matching_files(filename): """Returns a list of files that match the given pattern(s). Args: filename: string or iterable of strings. The glob pattern(s). Returns: A list of strings containing filenames that match the given pattern(s). Raises: errors.OpError: If there are filesystem / directory listing errors. """ with errors.raise_exception_on_not_ok_status() as status: if isinstance(filename, six.string_types): return [ # Convert the filenames to string from bytes. compat.as_str_any(matching_filename) for matching_filename in pywrap_tensorflow.GetMatchingFiles( compat.as_bytes(filename), status) ] else: return [ # Convert the filenames to string from bytes. compat.as_str_any(matching_filename) for single_filename in filename for matching_filename in pywrap_tensorflow.GetMatchingFiles( compat.as_bytes(single_filename), status) ] @tf_export("gfile.MkDir") def create_dir(dirname): """Creates a directory with the name 'dirname'. Args: dirname: string, name of the directory to be created Notes: The parent directories need to exist. Use recursive_create_dir instead if there is the possibility that the parent dirs don't exist. Raises: errors.OpError: If the operation fails. """ with errors.raise_exception_on_not_ok_status() as status: pywrap_tensorflow.CreateDir(compat.as_bytes(dirname), status) @tf_export("gfile.MakeDirs") def recursive_create_dir(dirname): """Creates a directory and all parent/intermediate directories. It succeeds if dirname already exists and is writable. Args: dirname: string, name of the directory to be created Raises: errors.OpError: If the operation fails. """ with errors.raise_exception_on_not_ok_status() as status: pywrap_tensorflow.RecursivelyCreateDir(compat.as_bytes(dirname), status) @tf_export("gfile.Copy") def copy(oldpath, newpath, overwrite=False): """Copies data from oldpath to newpath. Args: oldpath: string, name of the file who's contents need to be copied newpath: string, name of the file to which to copy to overwrite: boolean, if false its an error for newpath to be occupied by an existing file. Raises: errors.OpError: If the operation fails. """ with errors.raise_exception_on_not_ok_status() as status: pywrap_tensorflow.CopyFile( compat.as_bytes(oldpath), compat.as_bytes(newpath), overwrite, status) @tf_export("gfile.Rename") def rename(oldname, newname, overwrite=False): """Rename or move a file / directory. Args: oldname: string, pathname for a file newname: string, pathname to which the file needs to be moved overwrite: boolean, if false it's an error for `newname` to be occupied by an existing file. Raises: errors.OpError: If the operation fails. """ with errors.raise_exception_on_not_ok_status() as status: pywrap_tensorflow.RenameFile( compat.as_bytes(oldname), compat.as_bytes(newname), overwrite, status) def atomic_write_string_to_file(filename, contents, overwrite=True): """Writes to `filename` atomically. This means that when `filename` appears in the filesystem, it will contain all of `contents`. With write_string_to_file, it is possible for the file to appear in the filesystem with `contents` only partially written. Accomplished by writing to a temp file and then renaming it. Args: filename: string, pathname for a file contents: string, contents that need to be written to the file overwrite: boolean, if false it's an error for `filename` to be occupied by an existing file. """ temp_pathname = filename + ".tmp" + uuid.uuid4().hex write_string_to_file(temp_pathname, contents) try: rename(temp_pathname, filename, overwrite) except errors.OpError: delete_file(temp_pathname) raise @tf_export("gfile.DeleteRecursively") def delete_recursively(dirname): """Deletes everything under dirname recursively. Args: dirname: string, a path to a directory Raises: errors.OpError: If the operation fails. """ with errors.raise_exception_on_not_ok_status() as status: pywrap_tensorflow.DeleteRecursively(compat.as_bytes(dirname), status) @tf_export("gfile.IsDirectory") def is_directory(dirname): """Returns whether the path is a directory or not. Args: dirname: string, path to a potential directory Returns: True, if the path is a directory; False otherwise """ status = c_api_util.ScopedTFStatus() return pywrap_tensorflow.IsDirectory(compat.as_bytes(dirname), status) @tf_export("gfile.ListDirectory") def list_directory(dirname): """Returns a list of entries contained within a directory. The list is in arbitrary order. It does not contain the special entries "." and "..". Args: dirname: string, path to a directory Returns: [filename1, filename2, ... filenameN] as strings Raises: errors.NotFoundError if directory doesn't exist """ if not is_directory(dirname): raise errors.NotFoundError(None, None, "Could not find directory") with errors.raise_exception_on_not_ok_status() as status: # Convert each element to string, since the return values of the # vector of string should be interpreted as strings, not bytes. return [ compat.as_str_any(filename) for filename in pywrap_tensorflow.GetChildren( compat.as_bytes(dirname), status) ] @tf_export("gfile.Walk") def walk(top, in_order=True): """Recursive directory tree generator for directories. Args: top: string, a Directory name in_order: bool, Traverse in order if True, post order if False. Errors that happen while listing directories are ignored. Yields: Each yield is a 3-tuple: the pathname of a directory, followed by lists of all its subdirectories and leaf files. (dirname, [subdirname, subdirname, ...], [filename, filename, ...]) as strings """ top = compat.as_str_any(top) try: listing = list_directory(top) except errors.NotFoundError: return files = [] subdirs = [] for item in listing: full_path = os.path.join(top, item) if is_directory(full_path): subdirs.append(item) else: files.append(item) here = (top, subdirs, files) if in_order: yield here for subdir in subdirs: for subitem in walk(os.path.join(top, subdir), in_order): yield subitem if not in_order: yield here @tf_export("gfile.Stat") def stat(filename): """Returns file statistics for a given path. Args: filename: string, path to a file Returns: FileStatistics struct that contains information about the path Raises: errors.OpError: If the operation fails. """ file_statistics = pywrap_tensorflow.FileStatistics() with errors.raise_exception_on_not_ok_status() as status: pywrap_tensorflow.Stat(compat.as_bytes(filename), file_statistics, status) return file_statistics
以上這篇詳談tensorflow gfile文件的用法就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持億速云。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。