91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

Tensorflow:轉置函數 transpose的使用詳解

發布時間:2020-09-25 00:28:29 來源:腳本之家 閱讀:126 作者:abclhq2005 欄目:開發技術

我就廢話不多說,咱直接看代碼吧!

tf.transpose

transpose(
  a,
  perm=None,
  name='transpose'
)

Defined in tensorflow/python/ops/array_ops.py.

See the guides: Math > Matrix Math Functions, Tensor Transformations > Slicing and Joining

Transposes a. Permutes the dimensions according to perm.

The returned tensor's dimension i will correspond to the input dimension perm[i]. If perm is not given, it is set to (n-1…0), where n is the rank of the input tensor. Hence by default, this operation performs a regular matrix transpose on 2-D input Tensors.

For example:

x = tf.constant([[1, 2, 3], [4, 5, 6]])
tf.transpose(x) # [[1, 4]
         # [2, 5]
         # [3, 6]]

tf.transpose(x, perm=[1, 0]) # [[1, 4]
               # [2, 5]
               # [3, 6]]
# 'perm' is more useful for n-dimensional tensors, for n > 2
x = tf.constant([[[ 1, 2, 3],
         [ 4, 5, 6]],
         [[ 7, 8, 9],
         [10, 11, 12]]])

# Take the transpose of the matrices in dimension-0
tf.transpose(x, perm=[0, 2, 1]) # [[[1, 4],
                 #  [2, 5],
                 #  [3, 6]],
                 # [[7, 10],
                 #  [8, 11],
                 #  [9, 12]]]

a的轉置是根據 perm 的設定值來進行的。

返回數組的 dimension(尺寸、維度) i與輸入的 perm[i]的維度相一致。如果未給定perm,默認設置為 (n-1…0),這里的 n 值是輸入變量的 rank 。因此默認情況下,這個操作執行了一個正規(regular)的2維矩形的轉置

例如:

x = [[1 2 3]
   [4 5 6]]

tf.transpose(x) ==> [[1 4]
           [2 5]
           [3 6]]

tf.transpose(x) 等價于:
tf.transpose(x perm=[1, 0]) ==> [[1 4]
                 [2 5]
                 [3 6]]
a=tf.constant([[[1,2,3],[4,5,6]],[[7,8,9],[10,11,12]]])
array([[[ 1, 2, 3],
    [ 4, 5, 6]],

    [[ 7, 8, 9],
    [10, 11, 12]]])

x=tf.transpose(a,[1,0,2])
array([[[ 1, 2, 3],
    [ 7, 8, 9]],

    [[ 4, 5, 6],
    [10, 11, 12]]])

x=tf.transpose(a,[0,2,1])
array([[[ 1, 4],
    [ 2, 5],
    [ 3, 6]],

    [[ 7, 10],
    [ 8, 11],
    [ 9, 12]]]) 

x=tf.transpose(a,[2,1,0])
array([[[ 1, 7],
    [ 4, 10]],

    [[ 2, 8],
    [ 5, 11]],

    [[ 3, 9],
    [ 6, 12]]])


array([[[ 1, 7],
    [ 4, 10]],

    [[ 2, 8],
    [ 5, 11]],

    [[ 3, 9],
    [ 6, 12]]])

x=tf.transpose(a,[1,2,0])
array([[[ 1, 7],
    [ 2, 8],
    [ 3, 9]],

    [[ 4, 10],
    [ 5, 11],
    [ 6, 12]]])

以上這篇Tensorflow:轉置函數 transpose的使用詳解就是小編分享給大家的全部內容了,希望能給大家一個參考,也希望大家多多支持億速云。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

阳江市| 伊川县| 呈贡县| 英德市| 麦盖提县| 琼中| 金川县| 都安| 安岳县| 遂溪县| 光山县| 寿阳县| 通州市| 襄汾县| 沙田区| 黎平县| 宝清县| 天柱县| 盘山县| 普宁市| 车致| 通河县| 隆安县| 横山县| 台安县| 临邑县| 湖南省| 旺苍县| 大邑县| 容城县| 黎城县| 襄垣县| 突泉县| 通州区| 治多县| 兴仁县| 唐河县| 三明市| 崇礼县| 攀枝花市| 镶黄旗|