91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

溫馨提示×

您好,登錄后才能下訂單哦!

密碼登錄×
登錄注冊×
其他方式登錄
點擊 登錄注冊 即表示同意《億速云用戶服務條款》

怎么在pytorch中使用cuda擴展

發布時間:2021-03-20 17:13:51 來源:億速云 閱讀:277 作者:Leah 欄目:開發技術

怎么在pytorch中使用cuda擴展?針對這個問題,這篇文章詳細介紹了相對應的分析和解答,希望可以幫助更多想解決這個問題的小伙伴找到更簡單易行的方法。

第一步:cuda編程的源文件和頭文件

// mathutil_cuda_kernel.cu
// 頭文件,最后一個是cuda特有的
#include <curand.h>
#include <stdio.h>
#include <math.h>
#include <float.h>
#include "mathutil_cuda_kernel.h"

// 獲取GPU線程通道信息
dim3 cuda_gridsize(int n)
{
  int k = (n - 1) / BLOCK + 1;
  int x = k;
  int y = 1;
  if(x > 65535) {
    x = ceil(sqrt(k));
    y = (n - 1) / (x * BLOCK) + 1;
  }
  dim3 d(x, y, 1);
  return d;
}
// 這個函數是cuda執行函數,可以看到細化到了每一個元素
__global__ void broadcast_sum_kernel(float *a, float *b, int x, int y, int size)
{
  int i = (blockIdx.x + blockIdx.y * gridDim.x) * blockDim.x + threadIdx.x;
  if(i >= size) return;
  int j = i % x; i = i / x;
  int k = i % y;
  a[IDX2D(j, k, y)] += b[k];
}


// 這個函數是與c語言函數鏈接的接口函數
void broadcast_sum_cuda(float *a, float *b, int x, int y, cudaStream_t stream)
{
  int size = x * y;
  cudaError_t err;
  
  // 上面定義的函數
  broadcast_sum_kernel<<<cuda_gridsize(size), BLOCK, 0, stream>>>(a, b, x, y, size);

  err = cudaGetLastError();
  if (cudaSuccess != err)
  {
    fprintf(stderr, "CUDA kernel failed : %s\n", cudaGetErrorString(err));
    exit(-1);
  }
}
#ifndef _MATHUTIL_CUDA_KERNEL
#define _MATHUTIL_CUDA_KERNEL

#define IDX2D(i, j, dj) (dj * i + j)
#define IDX3D(i, j, k, dj, dk) (IDX2D(IDX2D(i, j, dj), k, dk))

#define BLOCK 512
#define MAX_STREAMS 512

#ifdef __cplusplus
extern "C" {
#endif

void broadcast_sum_cuda(float *a, float *b, int x, int y, cudaStream_t stream);

#ifdef __cplusplus
}
#endif

#endif

第二步:C編程的源文件和頭文件(接口函數)

// mathutil_cuda.c
// THC是pytorch底層GPU庫
#include <THC/THC.h>
#include "mathutil_cuda_kernel.h"

extern THCState *state;

int broadcast_sum(THCudaTensor *a_tensor, THCudaTensor *b_tensor, int x, int y)
{
  float *a = THCudaTensor_data(state, a_tensor);
  float *b = THCudaTensor_data(state, b_tensor);
  cudaStream_t stream = THCState_getCurrentStream(state);

  // 這里調用之前在cuda中編寫的接口函數
  broadcast_sum_cuda(a, b, x, y, stream);

  return 1;
}
int broadcast_sum(THCudaTensor *a_tensor, THCudaTensor *b_tensor, int x, int y);

第三步:編譯,先編譯cuda模塊,再編譯接口函數模塊(不能放在一起同時編譯)

nvcc -c -o mathutil_cuda_kernel.cu.o mathutil_cuda_kernel.cu -x cu -Xcompiler -fPIC -arch=sm_52
import os
import torch
from torch.utils.ffi import create_extension

this_file = os.path.dirname(__file__)

sources = []
headers = []
defines = []
with_cuda = False

if torch.cuda.is_available():
  print('Including CUDA code.')
  sources += ['src/mathutil_cuda.c']
  headers += ['src/mathutil_cuda.h']
  defines += [('WITH_CUDA', None)]
  with_cuda = True

this_file = os.path.dirname(os.path.realpath(__file__))

extra_objects = ['src/mathutil_cuda_kernel.cu.o']  # 這里是編譯好后的.o文件位置
extra_objects = [os.path.join(this_file, fname) for fname in extra_objects]


ffi = create_extension(
  '_ext.cuda_util',
  headers=headers,
  sources=sources,
  define_macros=defines,
  relative_to=__file__,
  with_cuda=with_cuda,
  extra_objects=extra_objects
)

if __name__ == '__main__':
  ffi.build()

第四步:調用cuda模塊

from _ext import cuda_util #從對應路徑中調用編譯好的模塊

a = torch.randn(3, 5).cuda()
b = torch.randn(3, 1).cuda()
mathutil.broadcast_sum(a, b, *map(int, a.size()))

# 上面等價于下面的效果:

a = torch.randn(3, 5)
b = torch.randn(3, 1)
a += b

關于怎么在pytorch中使用cuda擴展問題的解答就分享到這里了,希望以上內容可以對大家有一定的幫助,如果你還有很多疑惑沒有解開,可以關注億速云行業資訊頻道了解更多相關知識。

向AI問一下細節

免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。

AI

东方市| 稻城县| 二连浩特市| 滨州市| 六枝特区| 达孜县| 垫江县| 舞阳县| 福州市| 西乌珠穆沁旗| 郯城县| 府谷县| 淮北市| 阳原县| 自贡市| 邯郸市| 宝山区| 泸西县| 叶城县| 漠河县| 临武县| 托里县| 鄂托克旗| 项城市| 宜都市| 曲麻莱县| 乌兰浩特市| 电白县| 鹿邑县| 乌兰察布市| 渭源县| 师宗县| 崇阳县| 常宁市| 通河县| 衡水市| 台中市| 宝兴县| 吴桥县| 永州市| 佛坪县|