您好,登錄后才能下訂單哦!
工作中經常遇到一類需求,根據 IP 地址段來查找 IP 對應的歸屬地信息。如果把查詢過程放到關系型數據庫中,會帶來很大的 IO 消耗,速度也不能滿足,顯然是不合適的。
那有哪些更好的辦法呢?為此做了一些嘗試,下面來詳細說明。
構建索引文件
在 GitHub 上看到一個ip2region 項目,作者通過生成一個包含有二級索引的文件來實現快速查詢,查詢速度足夠快,毫秒級別。但如果想更新地址段或歸屬地信息,每次都要重新生成文件,并不是很方便。
不過還是推薦大家看看這個項目,其中建索引的思想還是很值得學習的。作者的開源項目中只有查詢的相關代碼,并沒有生成索引文件的代碼,我依照原理圖寫了一段生成索引文件的代碼,如下:
# -*- coding:utf-8 -*- import time import socket import struct IP_REGION_FILE = './data/ip_to_region.db' SUPER_BLOCK_LENGTH = 8 INDEX_BLOCK_LENGTH = 12 HEADER_INDEX_LENGTH = 8192 def generate_db_file(): pointer = SUPER_BLOCK_LENGTH + HEADER_INDEX_LENGTH region, index = '', '' # 文件格式 # 1.0.0.0|1.0.0.255|澳大利亞|0|0|0|0 # 1.0.1.0|1.0.3.255|中國|0|福建省|福州市|電信 with open('./ip.merge.txt', 'r') as f: for line in f.readlines(): item = line.strip().split('|') print item[0], item[1], item[2], item[3], item[4], item[5], item[6] start_ip = struct.pack('I', struct.unpack('!L', socket.inet_aton(item[0]))[0]) end_ip = struct.pack('I', struct.unpack('!L', socket.inet_aton(item[1]))[0]) region_item = '|'.join([item[2], item[3], item[4], item[5], item[6]]) region += region_item ptr = struct.pack('I', int(bin(len(region_item))[2:].zfill(8) + bin(pointer)[2:].zfill(24), 2)) index += start_ip + end_ip + ptr pointer += len(region_item) index_start_ptr = pointer index_end_ptr = pointer + len(index) - 12 super_block = struct.pack('I', index_start_ptr) + struct.pack('I', index_end_ptr) n = 0 header_index = '' for index_block in range(pointer, index_end_ptr, 8184): header_index_block_ip = index[n * 8184:n * 8184 + 4] header_index_block_ptr = index_block header_index += header_index_block_ip + struct.pack('I', header_index_block_ptr) n += 1 header_index += index[len(index) - 12: len(index) - 8] + struct.pack('I', index_end_ptr) with open(IP_REGION_FILE, 'wb') as f: f.write(super_block) f.write(header_index) f.seek(SUPER_BLOCK_LENGTH + HEADER_INDEX_LENGTH, 0) f.write(region) f.write(index) if __name__ == '__main__': start_time = time.time() generate_db_file() print 'cost time: ', time.time() - start_time
使用 Redis 緩存
目前有兩種方式對 IP 以及歸屬地信息進行緩存:
第一種是將起始 IP,結束 IP 以及中間所有 IP 轉換成整型,然后以字符串方式,用轉換后的 IP 作為 key,歸屬地信息作為 value 存入 Redis;
第二種是采用有序集合和散列方式,首先將起始 IP 和結束 IP 添加到有序集合 ip2cityid,城市 ID 作為成員,轉換后的 IP 作為分值,然后再將城市 ID 和歸屬地信息添加到散列 cityid2city,城市 ID 作為 key,歸屬地信息作為 value。
第一種方式就不多做介紹了,簡單粗暴,非常不推薦。查詢速度當然很快,毫秒級別,但缺點也十分明顯,我用 1000 條數據做了測試,緩存時間長,大概 20 分鐘,占用空間大,將近 1G。
下面介紹第二種方式,直接看代碼:
# generate_to_redis.py # -*- coding:utf-8 -*- import time import json from redis import Redis def ip_to_num(x): return sum([256 ** j * int(i) for j, i in enumerate(x.split('.')[::-1])]) # 連接 Redis conn = Redis(host='127.0.0.1', port=6379, db=10) start_time = time.time() # 文件格式 # 1.0.0.0|1.0.0.255|澳大利亞|0|0|0|0 # 1.0.1.0|1.0.3.255|中國|0|福建省|福州市|電信 with open('./ip.merge.txt', 'r') as f: i = 1 for line in f.readlines(): item = line.strip().split('|') # 將起始 IP 和結束 IP 添加到有序集合 ip2cityid # 成員分別是城市 ID 和 ID + #, 分值是根據 IP 計算的整數值 conn.zadd('ip2cityid', str(i), ip_to_num(item[0]), str(i) + '#', ip_to_num(item[1]) + 1) # 將城市信息添加到散列 cityid2city,key 是城市 ID,值是城市信息的 json 序列 conn.hset('cityid2city', str(i), json.dumps([item[2], item[3], item[4], item[5]])) i += 1 end_time = time.time() print 'start_time: ' + str(start_time) + ', end_time: ' + str(end_time) + ', cost time: ' + str(end_time - start_time)
# test.py # -*- coding:utf-8 -*- import sys import time import json import socket import struct from redis import Redis # 連接 Redis conn = Redis(host='127.0.0.1', port=6379, db=10) # 將 IP 轉換成整數 ip = struct.unpack("!L", socket.inet_aton(sys.argv[1]))[0] start_time = time.time() # 將有序集合從大到小排序,取小于輸入 IP 值的第一條數據 cityid = conn.zrevrangebyscore('ip2cityid', ip, 0, start=0, num=1) # 如果返回 cityid 是空,或者匹配到了 # 號,說明沒有找到對應地址段 if not cityid or cityid[0].endswith('#'): print 'no city info...' else: # 根據城市 ID 到散列表取出城市信息 ret = json.loads(conn.hget('cityid2city', cityid[0])) print ret[0], ret[1], ret[2] end_time = time.time() print 'start_time: ' + str(start_time) + ', end_time: ' + str(end_time) + ', cost time: ' + str(end_time - start_time)
# python generate_to_redis.py start_time: 1554300310.31, end_time: 1554300425.65, cost time: 115.333260059
# python test_2.py 1.0.16.0 日本 0 0 start_time: 1555081532.44, end_time: 1555081532.45, cost time: 0.000912189483643
測試數據大概 50 萬條,緩存所用時間不到 2 分鐘,占用內存 182M,查詢速度毫秒級別。顯而易見,這種方式更值得嘗試。
zrevrangebyscore 方法的時間復雜度是 O(log(N)+M), N 為有序集的基數, M 為結果集的基數。可見當 N 的值越大,查詢效率越慢,具體在多大的數據量還可以高效查詢,這個有待驗證。不過這個問題我覺得并不用擔心,遇到了再說吧。
以上所述是小編給大家介紹的使用Redis有序集合實現IP歸屬地查詢詳解整合,希望對大家有所幫助,如果大家有任何疑問請給我留言,小編會及時回復大家的。在此也非常感謝大家對億速云網站的支持!
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。