您好,登錄后才能下訂單哦!
不知道大家之前對類似什么是MySQL索引原理及優化的基本步驟的文章有無了解,今天我在這里給大家再簡單的講講。感興趣的話就一起來看看正文部分吧,相信看完什么是MySQL索引原理及優化的基本步驟你一定會有所收獲的。
本文是美團一位大佬寫的,還不錯拿出來和大家分享下,代碼中嵌套在html中sql語句是java框架的寫法,理解其sql要執行的語句即可。
MySQL憑借著出色的性能、低廉的成本、豐富的資源,已經成為絕大多數互聯網公司的首選關系型數據庫。雖然性能出色,但所謂“好馬配好鞍”,如何能夠更好的使用它,已經成為開發工程師的必修課,我們經常會從職位描述上看到諸如“精通MySQL”、“SQL語句優化”、“了解數據庫原理”等要求。我們知道一般的應用系統,讀寫比例在10:1左右,而且插入操作和一般的更新操作很少出現性能問題,遇到最多的,也是最容易出問題的,還是一些復雜的查詢操作,所以查詢語句的優化顯然是重中之重。
本人從13年7月份起,一直在美團核心業務系統部做慢查詢的優化工作,共計十余個系統,累計解決和積累了上百個慢查詢案例。隨著業務的復雜性提升,遇到的問題千奇百怪,五花八門,匪夷所思。本文旨在以開發工程師的角度來解釋數據庫索引的原理和如何優化慢查詢。
<span class="hljs-keyword">select</span> <span class="hljs-keyword">count</span>(*) <span class="hljs-keyword">from</span> task <span class="hljs-keyword">where</span> <span class="hljs-keyword">status</span>=<span class="hljs-number">2</span> <span class="hljs-keyword">and</span> operator_id=<span class="hljs-number">20839</span> <span class="hljs-keyword">and</span> operate_time><span class="hljs-number">1371169729</span> <span class="hljs-keyword">and</span> operate_time<<span class="hljs-number">1371174603</span> <span class="hljs-keyword">and</span> <span class="hljs-keyword">type</span>=<span class="hljs-number">2</span>;
系統使用者反應有一個功能越來越慢,于是工程師找到了上面的SQL。
并且興致沖沖的找到了我,“這個SQL需要優化,給我把每個字段都加上索引”。
我很驚訝,問道:“為什么需要每個字段都加上索引?”
“把查詢的字段都加上索引會更快”,工程師信心滿滿。
“這種情況完全可以建一個聯合索引,因為是最左前綴匹配,所以operate_time需要放到最后,而且還需要把其他相關的查詢都拿來,需要做一個綜合評估。”
“聯合索引?最左前綴匹配?綜合評估?”工程師不禁陷入了沉思。
多數情況下,我們知道索引能夠提高查詢效率,但應該如何建立索引?索引的順序如何?許多人卻只知道大概。其實理解這些概念并不難,而且索引的原理遠沒有想象的那么復雜。
索引的目的在于提高查詢效率,可以類比字典,如果要查“mysql”這個單詞,我們肯定需要定位到m字母,然后從下往下找到y字母,再找到剩下的sql。如果沒有索引,那么你可能需要把所有單詞看一遍才能找到你想要的,如果我想找到m開頭的單詞呢?或者ze開頭的單詞呢?是不是覺得如果沒有索引,這個事情根本無法完成?
除了詞典,生活中隨處可見索引的例子,如火車站的車次表、圖書的目錄等。它們的原理都是一樣的,通過不斷的縮小想要獲得數據的范圍來篩選出最終想要的結果,同時把隨機的事件變成順序的事件,也就是我們總是通過同一種查找方式來鎖定數據。
數據庫也是一樣,但顯然要復雜許多,因為不僅面臨著等值查詢,還有范圍查詢(>、<、between、in)、模糊查詢(like)、并集查詢(or)等等。數據庫應該選擇怎么樣的方式來應對所有的問題呢?我們回想字典的例子,能不能把數據分成段,然后分段查詢呢?最簡單的如果1000條數據,1到100分成第一段,101到200分成第二段,201到300分成第三段……這樣查第250條數據,只要找第三段就可以了,一下子去除了90%的無效數據。但如果是1千萬的記錄呢,分成幾段比較好?稍有算法基礎的同學會想到搜索樹,其平均復雜度是lgN,具有不錯的查詢性能。但這里我們忽略了一個關鍵的問題,復雜度模型是基于每次相同的操作成本來考慮的,數據庫實現比較復雜,數據保存在磁盤上,而為了提高性能,每次又可以把部分數據讀入內存來計算,因為我們知道訪問磁盤的成本大概是訪問內存的十萬倍左右,所以簡單的搜索樹難以滿足復雜的應用場景。
前面提到了訪問磁盤,那么這里先簡單介紹一下磁盤IO和預讀,磁盤讀取數據靠的是機械運動,每次讀取數據花費的時間可以分為尋道時間、旋轉延遲、傳輸時間三個部分,尋道時間指的是磁臂移動到指定磁道所需要的時間,主流磁盤一般在5ms以下;旋轉延遲就是我們經常聽說的磁盤轉速,比如一個磁盤7200轉,表示每分鐘能轉7200次,也就是說1秒鐘能轉120次,旋轉延遲就是1/120/2 = 4.17ms;傳輸時間指的是從磁盤讀出或將數據寫入磁盤的時間,一般在零點幾毫秒,相對于前兩個時間可以忽略不計。那么訪問一次磁盤的時間,即一次磁盤IO的時間約等于5+4.17 = 9ms左右,聽起來還挺不錯的,但要知道一臺500 -MIPS的機器每秒可以執行5億條指令,因為指令依靠的是電的性質,換句話說執行一次IO的時間可以執行40萬條指令,數據庫動輒十萬百萬乃至千萬級數據,每次9毫秒的時間,顯然是個災難。下圖是計算機硬件延遲的對比圖,供大家參考:
various-system-software-hardware-latencies
考慮到磁盤IO是非常高昂的操作,計算機操作系統做了一些優化,當一次IO時,不光把當前磁盤地址的數據,而是把相鄰的數據也都讀取到內存緩沖區內,因為局部預讀性原理告訴我們,當計算機訪問一個地址的數據的時候,與其相鄰的數據也會很快被訪問到。每一次IO讀取的數據我們稱之為一頁(page)。具體一頁有多大數據跟操作系統有關,一般為4k或8k,也就是我們讀取一頁內的數據時候,實際上才發生了一次IO,這個理論對于索引的數據結構設計非常有幫助。
前面講了生活中索引的例子,索引的基本原理,數據庫的復雜性,又講了操作系統的相關知識,目的就是讓大家了解,任何一種數據結構都不是憑空產生的,一定會有它的背景和使用場景,我們現在總結一下,我們需要這種數據結構能夠做些什么,其實很簡單,那就是:每次查找數據時把磁盤IO次數控制在一個很小的數量級,最好是常數數量級。那么我們就想到如果一個高度可控的多路搜索樹是否能滿足需求呢?就這樣,b+樹應運而生。
如上圖,是一顆b+樹,關于b+樹的定義可以參見B+樹,這里只說一些重點,淺藍色的塊我們稱之為一個磁盤塊,可以看到每個磁盤塊包含幾個數據項(深藍色所示)和指針(黃色所示),如磁盤塊1包含數據項17和35,包含指針P1、P2、P3,P1表示小于17的磁盤塊,P2表示在17和35之間的磁盤塊,P3表示大于35的磁盤塊。真實的數據存在于葉子節點即3、5、9、10、13、15、28、29、36、60、75、79、90、99。非葉子節點只不存儲真實的數據,只存儲指引搜索方向的數據項,如17、35并不真實存在于數據表中。
如圖所示,如果要查找數據項29,那么首先會把磁盤塊1由磁盤加載到內存,此時發生一次IO,在內存中用二分查找確定29在17和35之間,鎖定磁盤塊1的P2指針,內存時間因為非常短(相比磁盤的IO)可以忽略不計,通過磁盤塊1的P2指針的磁盤地址把磁盤塊3由磁盤加載到內存,發生第二次IO,29在26和30之間,鎖定磁盤塊3的P2指針,通過指針加載磁盤塊8到內存,發生第三次IO,同時內存中做二分查找找到29,結束查詢,總計三次IO。真實的情況是,3層的b+樹可以表示上百萬的數據,如果上百萬的數據查找只需要三次IO,性能提高將是巨大的,如果沒有索引,每個數據項都要發生一次IO,那么總共需要百萬次的IO,顯然成本非常非常高。
通過上面的分析,我們知道IO次數取決于b+數的高度h,假設當前數據表的數據為N,每個磁盤塊的數據項的數量是m,則有h=㏒(m+1)N,當數據量N一定的情況下,m越大,h越小;而m = 磁盤塊的大小 / 數據項的大小,磁盤塊的大小也就是一個數據頁的大小,是固定的,如果數據項占的空間越小,數據項的數量越多,樹的高度越低。這就是為什么每個數據項,即索引字段要盡量的小,比如int占4字節,要比bigint8字節少一半。這也是為什么b+樹要求把真實的數據放到葉子節點而不是內層節點,一旦放到內層節點,磁盤塊的數據項會大幅度下降,導致樹增高。當數據項等于1時將會退化成線性表。
當b+樹的數據項是復合的數據結構,比如(name,age,sex)的時候,b+數是按照從左到右的順序來建立搜索樹的,比如當(張三,20,F)這樣的數據來檢索的時候,b+樹會優先比較name來確定下一步的所搜方向,如果name相同再依次比較age和sex,最后得到檢索的數據;但當(20,F)這樣的沒有name的數據來的時候,b+樹就不知道下一步該查哪個節點,因為建立搜索樹的時候name就是第一個比較因子,必須要先根據name來搜索才能知道下一步去哪里查詢。比如當(張三,F)這樣的數據來檢索時,b+樹可以用name來指定搜索方向,但下一個字段age的缺失,所以只能把名字等于張三的數據都找到,然后再匹配性別是F的數據了, 這個是非常重要的性質,即索引的最左匹配特性。
關于MySQL索引原理是比較枯燥的東西,大家只需要有一個感性的認識,并不需要理解得非常透徹和深入。我們回頭來看看一開始我們說的慢查詢,了解完索引原理之后,大家是不是有什么想法呢?先總結一下索引的幾大基本原則:
根據最左匹配原則,最開始的sql語句的索引應該是status、operator_id、type、operate_time的聯合索引;其中status、operator_id、type的順序可以顛倒,所以我才會說,把這個表的所有相關查詢都找到,會綜合分析; 比如還有如下查詢:
<span class="hljs-keyword">select</span> * <span class="hljs-keyword">from</span> task <span class="hljs-keyword">where</span> <span class="hljs-keyword">status</span> = <span class="hljs-number">0</span> <span class="hljs-keyword">and</span> <span class="hljs-keyword">type</span> = <span class="hljs-number">12</span> <span class="hljs-keyword">limit</span> <span class="hljs-number">10</span>;
<span class="hljs-keyword">select</span> <span class="hljs-keyword">count</span>(*) <span class="hljs-keyword">from</span> task <span class="hljs-keyword">where</span> <span class="hljs-keyword">status</span> = <span class="hljs-number">0</span> ;
那么索引建立成(status,type,operator_id,operate_time)就是非常正確的,因為可以覆蓋到所有情況。這個就是利用了索引的最左匹配的原則
關于explain命令相信大家并不陌生,具體用法和字段含義可以參考官網explain-output,這里需要強調rows是核心指標,絕大部分rows小的語句執行一定很快(有例外,下面會講到)。所以優化語句基本上都是在優化rows。
下面幾個例子詳細解釋了如何分析和優化慢查詢。
很多情況下,我們寫SQL只是為了實現功能,這只是第一步,不同的語句書寫方式對于效率往往有本質的差別,這要求我們對mysql的執行計劃和索引原則有非常清楚的認識,請看下面的語句:
<span class="hljs-keyword">select</span> <span class="hljs-keyword">distinct</span> cert.emp_id <span class="hljs-keyword">from</span> cm_log cl <span class="hljs-keyword">inner</span> <span class="hljs-keyword">join</span> ( <span class="hljs-keyword">select</span> emp.id <span class="hljs-keyword">as</span> emp_id, emp_cert.id <span class="hljs-keyword">as</span> cert_id <span class="hljs-keyword">from</span> employee emp <span class="hljs-keyword">left</span> <span class="hljs-keyword">join</span> emp_certificate emp_cert <span class="hljs-keyword">on</span> emp.id = emp_cert.emp_id <span class="hljs-keyword">where</span> emp.is_deleted=<span class="hljs-number">0</span> ) cert <span class="hljs-keyword">on</span> ( cl.ref_table=<span class="hljs-string">'Employee'</span> <span class="hljs-keyword">and</span> cl.ref_oid= cert.emp_id ) <span class="hljs-keyword">or</span> ( cl.ref_table=<span class="hljs-string">'EmpCertificate'</span> <span class="hljs-keyword">and</span> cl.ref_oid= cert.cert_id ) <span class="hljs-keyword">where</span> cl.last_upd_date >=<span class="hljs-string">'2013-11-07 15:03:00'</span> <span class="hljs-keyword">and</span> cl.last_upd_date<=<span class="hljs-string">'2013-11-08 16:00:00'</span>;
53 rows in <span class="hljs-keyword">set</span> (<span class="hljs-number">1.87</span> sec)
+<span class="hljs-comment">----+-------------+------------+-------+---------------------------------+-----------------------+---------+-------------------+-------+--------------------------------+</span> | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +<span class="hljs-comment">----+-------------+------------+-------+---------------------------------+-----------------------+---------+-------------------+-------+--------------------------------+</span> | 1 | PRIMARY | cl | range | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date | 8 | NULL | 379 | Using where; Using temporary | | 1 | PRIMARY | <derived2> | ALL | NULL | NULL | NULL | NULL | 63727 | Using where; Using join buffer | | 2 | DERIVED | emp | ALL | NULL | NULL | NULL | NULL | 13317 | Using where | | 2 | DERIVED | emp_cert | ref | emp_certificate_empid | emp_certificate_empid | 4 | meituanorg.emp.id | 1 | Using index | +<span class="hljs-comment">----+-------------+------------+-------+---------------------------------+-----------------------+---------+-------------------+-------+--------------------------------+</span>
簡述一下執行計劃,首先mysql根據idx_last_upd_date索引掃描cm_log表獲得379條記錄;然后查表掃描了63727條記錄,分為兩部分,derived表示構造表,也就是不存在的表,可以簡單理解成是一個語句形成的結果集,后面的數字表示語句的ID。derived2表示的是ID = 2的查詢構造了虛擬表,并且返回了63727條記錄。我們再來看看ID = 2的語句究竟做了寫什么返回了這么大量的數據,首先全表掃描employee表13317條記錄,然后根據索引emp_certificate_empid關聯emp_certificate表,rows = 1表示,每個關聯都只鎖定了一條記錄,效率比較高。獲得后,再和cm_log的379條記錄根據規則關聯。從執行過程上可以看出返回了太多的數據,返回的數據絕大部分cm_log都用不到,因為cm_log只鎖定了379條記錄。
如何優化呢?可以看到我們在運行完后還是要和cm_log做join,那么我們能不能之前和cm_log做join呢?仔細分析語句不難發現,其基本思想是如果cm_log的ref_table是EmpCertificate就關聯emp_certificate表,如果ref_table是Employee就關聯employee表,我們完全可以拆成兩部分,并用union連接起來,注意這里用union,而不用union all是因為原語句有“distinct”來得到唯一的記錄,而union恰好具備了這種功能。如果原語句中沒有distinct不需要去重,我們就可以直接使用union all了,因為使用union需要去重的動作,會影響SQL性能。
優化過的語句如下:
<span class="hljs-keyword">select</span> emp.id <span class="hljs-keyword">from</span> cm_log cl <span class="hljs-keyword">inner</span> <span class="hljs-keyword">join</span> employee emp <span class="hljs-keyword">on</span> cl.ref_table = <span class="hljs-string">'Employee'</span> <span class="hljs-keyword">and</span> cl.ref_oid = emp.id <span class="hljs-keyword">where</span> cl.last_upd_date >=<span class="hljs-string">'2013-11-07 15:03:00'</span> <span class="hljs-keyword">and</span> cl.last_upd_date<=<span class="hljs-string">'2013-11-08 16:00:00'</span> <span class="hljs-keyword">and</span> emp.is_deleted = <span class="hljs-number">0</span> <span class="hljs-keyword">union</span> <span class="hljs-keyword">select</span> emp.id <span class="hljs-keyword">from</span> cm_log cl <span class="hljs-keyword">inner</span> <span class="hljs-keyword">join</span> emp_certificate ec <span class="hljs-keyword">on</span> cl.ref_table = <span class="hljs-string">'EmpCertificate'</span> <span class="hljs-keyword">and</span> cl.ref_oid = ec.id <span class="hljs-keyword">inner</span> <span class="hljs-keyword">join</span> employee emp <span class="hljs-keyword">on</span> emp.id = ec.emp_id <span class="hljs-keyword">where</span> cl.last_upd_date >=<span class="hljs-string">'2013-11-07 15:03:00'</span> <span class="hljs-keyword">and</span> cl.last_upd_date<=<span class="hljs-string">'2013-11-08 16:00:00'</span> <span class="hljs-keyword">and</span> emp.is_deleted = <span class="hljs-number">0</span>
不需要了解業務場景,只需要改造的語句和改造之前的語句保持結果一致
現有索引可以滿足,不需要建索引
用改造后的語句實驗一下,只需要10ms 降低了近200倍!
+<span class="hljs-comment">----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+</span> | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +<span class="hljs-comment">----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+</span> | 1 | PRIMARY | cl | range | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date | 8 | NULL | 379 | Using where | | 1 | PRIMARY | emp | eq_ref | PRIMARY | PRIMARY | 4 | meituanorg.cl.ref_oid | 1 | Using where | | 2 | UNION | cl | range | cm_log_cls_id,idx_last_upd_date | idx_last_upd_date | 8 | NULL | 379 | Using where | | 2 | UNION | ec | eq_ref | PRIMARY,emp_certificate_empid | PRIMARY | 4 | meituanorg.cl.ref_oid | 1 | | | 2 | UNION | emp | eq_ref | PRIMARY | PRIMARY | 4 | meituanorg.ec.emp_id | 1 | Using where | | NULL | UNION RESULT | <union1,2> | ALL | NULL | NULL | NULL | NULL | NULL | | +<span class="hljs-comment">----+--------------+------------+--------+---------------------------------+-------------------+---------+-----------------------+------+-------------+</span> 53 rows in <span class="hljs-keyword">set</span> (<span class="hljs-number">0.01</span> sec)
舉這個例子的目的在于顛覆我們對列的區分度的認知,一般上我們認為區分度越高的列,越容易鎖定更少的記錄,但在一些特殊的情況下,這種理論是有局限性的。
<span class="hljs-keyword">select</span> * <span class="hljs-keyword">from</span> stage_poi sp <span class="hljs-keyword">where</span> sp.accurate_result=<span class="hljs-number">1</span> <span class="hljs-keyword">and</span> ( sp.sync_status=<span class="hljs-number">0</span> <span class="hljs-keyword">or</span> sp.sync_status=<span class="hljs-number">2</span> <span class="hljs-keyword">or</span> sp.sync_status=<span class="hljs-number">4</span> );
先看看運行多長時間,951條數據6.22秒,真的很慢。
951 rows in <span class="hljs-keyword">set</span> (<span class="hljs-number">6.22</span> sec)
先explain,rows達到了361萬,type = ALL表明是全表掃描。
+<span class="hljs-comment">----+-------------+-------+------+---------------+------+---------+------+---------+-------------+</span> | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +<span class="hljs-comment">----+-------------+-------+------+---------------+------+---------+------+---------+-------------+</span> | 1 | SIMPLE | sp | ALL | NULL | NULL | NULL | NULL | 3613155 | Using where | +<span class="hljs-comment">----+-------------+-------+------+---------------+------+---------+------+---------+-------------+</span>
所有字段都應用查詢返回記錄數,因為是單表查詢 0已經做過了951條。
讓explain的rows 盡量逼近951。
看一下accurate_result = 1的記錄數:
<span class="hljs-keyword">select</span> <span class="hljs-keyword">count</span>(*),accurate_result <span class="hljs-keyword">from</span> stage_poi <span class="hljs-keyword">group</span> <span class="hljs-keyword">by</span> accurate_result; +<span class="hljs-comment">----------+-----------------+</span> | count(*) | accurate_result | +<span class="hljs-comment">----------+-----------------+</span> | 1023 | -1 | | 2114655 | 0 | | 972815 | 1 | +<span class="hljs-comment">----------+-----------------+</span>
我們看到accurate_result這個字段的區分度非常低,整個表只有-1,0,1三個值,加上索引也無法鎖定特別少量的數據。
再看一下sync_status字段的情況:
<span class="hljs-keyword">select</span> <span class="hljs-keyword">count</span>(*),sync_status <span class="hljs-keyword">from</span> stage_poi <span class="hljs-keyword">group</span> <span class="hljs-keyword">by</span> sync_status; +<span class="hljs-comment">----------+-------------+</span> | count(*) | sync_status | +<span class="hljs-comment">----------+-------------+</span> | 3080 | 0 | | 3085413 | 3 | +<span class="hljs-comment">----------+-------------+</span>
同樣的區分度也很低,根據理論,也不適合建立索引。
問題分析到這,好像得出了這個表無法優化的結論,兩個列的區分度都很低,即便加上索引也只能適應這種情況,很難做普遍性的優化,比如當sync_status 0、3分布的很平均,那么鎖定記錄也是百萬級別的。
找業務方去溝通,看看使用場景。業務方是這么來使用這個SQL語句的,每隔五分鐘會掃描符合條件的數據,處理完成后把sync_status這個字段變成1,五分鐘符合條件的記錄數并不會太多,1000個左右。了解了業務方的使用場景后,優化這個SQL就變得簡單了,因為業務方保證了數據的不平衡,如果加上索引可以過濾掉絕大部分不需要的數據。
根據建立索引規則,使用如下語句建立索引
<span class="hljs-keyword">alter</span> <span class="hljs-keyword">table</span> stage_poi <span class="hljs-keyword">add</span> <span class="hljs-keyword">index</span> idx_acc_status(accurate_result,sync_status);
觀察預期結果,發現只需要200ms,快了30多倍。
952 rows in <span class="hljs-keyword">set</span> (<span class="hljs-number">0.20</span> sec)
我們再來回顧一下分析問題的過程,單表查詢相對來說比較好優化,大部分時候只需要把where條件里面的字段依照規則加上索引就好,如果只是這種“無腦”優化的話,顯然一些區分度非常低的列,不應該加索引的列也會被加上索引,這樣會對插入、更新性能造成嚴重的影響,同時也有可能影響其它的查詢語句。所以我們第4步調差SQL的使用場景非常關鍵,我們只有知道這個業務場景,才能更好地輔助我們更好的分析和優化查詢語句。
<span class="hljs-keyword">select</span> c.id, c.name, c.position, c.sex, c.phone, c.office_phone, c.feature_info, c.birthday, c.creator_id, c.is_keyperson, c.giveup_reason, c.status, c.data_source, from_unixtime(c.created_time) <span class="hljs-keyword">as</span> created_time, from_unixtime(c.last_modified) <span class="hljs-keyword">as</span> last_modified, c.last_modified_user_id <span class="hljs-keyword">from</span> contact c <span class="hljs-keyword">inner</span> <span class="hljs-keyword">join</span> contact_branch cb <span class="hljs-keyword">on</span> c.id = cb.contact_id <span class="hljs-keyword">inner</span> <span class="hljs-keyword">join</span> branch_user bu <span class="hljs-keyword">on</span> cb.branch_id = bu.branch_id <span class="hljs-keyword">and</span> bu.status <span class="hljs-keyword">in</span> ( <span class="hljs-number">1</span>, <span class="hljs-number">2</span>) <span class="hljs-keyword">inner</span> <span class="hljs-keyword">join</span> org_emp_info oei <span class="hljs-keyword">on</span> oei.data_id = bu.user_id <span class="hljs-keyword">and</span> oei.node_left >= <span class="hljs-number">2875</span> <span class="hljs-keyword">and&llt;/span> oei.node_right <= <span class="hljs-number">10802</span> <span class="hljs-keyword">and</span> oei.org_category = - <span class="hljs-number">1</span> <span class="hljs-keyword">order</span> <span class="hljs-keyword">by</span> c.created_time <span class="hljs-keyword">desc</span> <span class="hljs-keyword">limit</span> <span class="hljs-number">0</span> , <span class="hljs-number">10</span>;
還是幾個步驟。
10 rows in <span class="hljs-keyword">set</span> (<span class="hljs-number">13.06</span> sec)
+<span class="hljs-comment">----+-------------+-------+--------+-------------------------------------+-------------------------+---------+--------------------------+------+----------------------------------------------+</span> | id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra | +<span class="hljs-comment">----+-------------+-------+--------+-------------------------------------+-------------------------+---------+--------------------------+------+----------------------------------------------+</span> | 1 | SIMPLE | oei | ref | idx_category_left_right,idx_data_id | idx_category_left_right | 5 | const | 8849 | Using where; Using temporary; Using filesort | | 1 | SIMPLE | bu | ref | PRIMARY,idx_userid_status | idx_userid_status | 4 | meituancrm.oei.data_id | 76 | Using where; Using index | | 1 | SIMPLE | cb | ref | idx_branch_id,idx_contact_branch_id | idx_branch_id | 4 | meituancrm.bu.branch_id | 1 | | | 1 | SIMPLE | c | eq_ref | PRIMARY | PRIMARY | 108 | meituancrm.cb.contact_id | 1 | | +<span class="hljs-comment">----+-------------+-------+--------+-------------------------------------+-------------------------+---------+--------------------------+------+----------------------------------------------+</span>
從執行計劃上看,mysql先查org_emp_info表掃描8849記錄,再用索引idx_userid_status關聯branch_user表,再用索引idx_branch_id關聯contact_branch表,最后主鍵關聯contact表。
rows返回的都非常少,看不到有什么異常情況。我們在看一下語句,發現后面有order by + limit組合,會不會是排序量太大搞的?于是我們簡化SQL,去掉后面的order by 和 limit,看看到底用了多少記錄來排序。
<span class="hljs-keyword">select</span> <span class="hljs-keyword">count</span>(*) <span class="hljs-keyword">from</span> contact c <span class="hljs-keyword">inner</span> <span class="hljs-keyword">join</span> contact_branch cb <span class="hljs-keyword">on</span> c.id = cb.contact_id <span class="hljs-keyword">inner</span> <span class="hljs-keyword">join</span> branch_user bu <span class="hljs-keyword">on</span> cb.branch_id = bu.branch_id <span class="hljs-keyword">and</span> bu.status <span class="hljs-keyword">in</span> ( <span class="hljs-number">1</span>, <span class="hljs-number">2</span>) <span class="hljs-keyword">inner</span> <span class="hljs-keyword">join</span> org_emp_info oei <span class="hljs-keyword">on</span> oei.data_id = bu.user_id <span class="hljs-keyword">and</span> oei.node_left >= <span class="hljs-number">2875</span> <span class="hljs-keyword">and</span> oei.node_right <= <span class="hljs-number">10802</span> <span class="hljs-keyword">and</span> oei.org_category = - <span class="hljs-number">1</span> +<span class="hljs-comment">----------+</span> | <span class="hljs-keyword">count</span>(*) | +<span class="hljs-comment">----------+</span> | <span class="hljs-number">778878</span> | +<span class="hljs-comment">----------+</span> <span class="hljs-number">1</span> <span class="hljs-keyword">row</span> <span class="hljs-keyword">in</span> <span class="hljs-keyword">set</span> (<span class="hljs-number">5.19</span> sec)
發現排序之前居然鎖定了778878條記錄,如果針對70萬的結果集排序,將是災難性的,怪不得這么慢,那我們能不能換個思路,先根據contact的created_time排序,再來join會不會比較快呢?
于是改造成下面的語句,也可以用straight_join來優化:
select c.id, c.name, c.position, c.sex, c.phone, c.office_phone, c.feature_info, c.birthday, c.creator_id, c.is_keyperson, c.giveup_reason, c.status, c.data_source, from_unixtime(c.created_time) as created_time, from_unixtime(c.last_modified) as last_modified, c.last_modified_user_id from contact c where exists ( select 1 from contact_branch cb inner join branch_user bu on cb.branch_id = bu.branch_id and bu.status in ( 1, 2) inner join org_emp_info oei on oei.data_id = bu.user_id and oei.node_left >= 2875 and oei.node_right <= 10802 and oei.org_category = – 1 where c.id = cb.contact_id ) order by c.created_time desc limit 0 , 10;
驗證一下效果 預計在
<span class="hljs-number">1</span>ms內,提升了<span class="hljs-number">13000</span>多倍! sql <span class="hljs-number">10</span> rows <span class="hljs-keyword">in</span> <span class="hljs-keyword">set</span> (<span class="hljs-number">0.00</span> sec)
本以為至此大工告成,但我們在前面的分析中漏了一個細節,先排序再join和先join再排序理論上開銷是一樣的,為何提升這么多是因為有一個limit!大致執行過程是:mysql先按索引排序得到前10條記錄,然后再去join過濾,當發現不夠10條的時候,再次去10條,再次join,這顯然在內層join過濾的數據非常多的時候,將是災難的,極端情況,內層一條數據都找不到,mysql還傻乎乎的每次取10條,幾乎遍歷了這個數據表!
用不同參數的SQL試驗下:
<span class="hljs-keyword">select</span> sql_no_cache c.id, c.name, c.position, c.sex, c.phone, c.office_phone, c.feature_info, c.birthday, c.creator_id, c.is_keyperson, c.giveup_reason, c.status, c.data_source, from_unixtime(c.created_time) <span class="hljs-keyword">as</span> created_time, from_unixtime(c.last_modified) <span class="hljs-keyword">as</span> last_modified, c.last_modified_user_id <span class="hljs-keyword">from</span> contact c <span class="hljs-keyword">where</span> <span class="hljs-keyword">exists</span> ( <span class="hljs-keyword">select</span> <span class="hljs-number">1</span> <span class="hljs-keyword">from</span> contact_branch cb <span class="hljs-keyword">inner</span> <span class="hljs-keyword">join</span> branch_user bu <span class="hljs-keyword">on</span> cb.branch_id = bu.branch_id <span class="hljs-keyword">and</span> bu.status <span class="hljs-keyword">in</span> ( <span class="hljs-number">1</span>, <span class="hljs-number">2</span>) <span class="hljs-keyword">inner</span> <span class="hljs-keyword">join</span> org_emp_info oei <span class="hljs-keyword">on</span> oei.data_id = bu.user_id <span class="hljs-keyword">and</span> oei.node_left >= <span class="hljs-number">2875</span> <span class="hljs-keyword">and</span> oei.node_right <= <span class="hljs-number">2875</span> <span class="hljs-keyword">and</span> oei.org_category = - <span class="hljs-number">1</span> <span class="hljs-keyword">where</span> c.id = cb.contact_id ) <span class="hljs-keyword">order</span> <span class="hljs-keyword">by</span> c.created_time <span class="hljs-keyword">desc</span> <span class="hljs-keyword">limit</span> <span class="hljs-number">0</span> , <span class="hljs-number">10</span>; Empty <span class="hljs-keyword">set</span> (<span class="hljs-number">2</span> <span class="hljs-keyword">min</span> <span class="hljs-number">18.99</span> sec)
2 min 18.99 sec!比之前的情況還糟糕很多。由于mysql的nested loop機制,遇到這種情況,基本是無法優化的。這條語句最終也只能交給應用系統去優化自己的邏輯了。 通過這個例子我們可以看到,并不是所有語句都能優化,而往往我們優化時,由于SQL用例回歸時落掉一些極端情況,會造成比原來還嚴重的后果。所以,第一:不要指望所有語句都能通過SQL優化,第二:不要過于自信,只針對具體case來優化,而忽略了更復雜的情況。
慢查詢的案例就分析到這兒,以上只是一些比較典型的案例。我們在優化過程中遇到過超過1000行,涉及到16個表join的“垃圾SQL”,也遇到過線上線下數據庫差異導致應用直接被慢查詢拖死,也遇到過varchar等值比較沒有寫單引號,還遇到過笛卡爾積查詢直接把從庫搞死。再多的案例其實也只是一些經驗的積累,如果我們熟悉查詢優化器、索引的內部原理,那么分析這些案例就變得特別簡單了。
本文以一個慢查詢案例引入了MySQL索引原理、優化慢查詢的一些方法論;并針對遇到的典型案例做了詳細的分析。其實做了這么長時間的語句優化后才發現,任何數據庫層面的優化都抵不上應用系統的優化,同樣是MySQL,可以用來支撐Google/FaceBook/Taobao應用,但可能連你的個人網站都撐不住。套用最近比較流行的話:“查詢容易,優化不易,且寫且珍惜!”
看完什么是MySQL索引原理及優化的基本步驟這篇文章,大家覺得怎么樣?如果想要了解更多相關,可以繼續關注我們的行業資訊板塊。
免責聲明:本站發布的內容(圖片、視頻和文字)以原創、轉載和分享為主,文章觀點不代表本網站立場,如果涉及侵權請聯系站長郵箱:is@yisu.com進行舉報,并提供相關證據,一經查實,將立刻刪除涉嫌侵權內容。