91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

Flink在Ubuntu上的數據流處理示例有哪些

小樊
82
2024-09-08 18:41:14
欄目: 智能運維

Apache Flink 是一個分布式流處理框架,用于實時處理無界和有界數據流

  1. 簡單的流處理:
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;

public class SimpleStreamProcessing {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        DataStream<String> source = env.fromElements("Hello", "Flink", "on", "Ubuntu");

        DataStream<String> processed = source.map(s -> s.toUpperCase());

        processed.print();

        env.execute("Simple Stream Processing Example");
    }
}
  1. 計算單詞頻率:
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;

public class WordCountExample {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        DataStream<String> source = env.fromElements("Hello", "Flink", "on", "Ubuntu", "is", "awesome");

        DataStream<Tuple2<String, Integer>> wordCounts = source
                .flatMap(new FlatMapFunction<String, Tuple2<String, Integer>>() {
                    @Override
                    public void flatMap(String value, Collector<Tuple2<String, Integer>> out) {
                        String[] words = value.split("\\s+");
                        for (String word : words) {
                            out.collect(new Tuple2<>(word, 1));
                        }
                    }
                })
                .keyBy(0)
                .sum(1);

        wordCounts.print();

        env.execute("Word Count Example");
    }
}
  1. 使用窗口函數計算滾動平均值:
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;

public class RollingAverageExample {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

        DataStream<Double> source = env.fromElements(1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0);

        DataStream<Double> rollingAverage = source
                .timeWindowAll(Time.seconds(3))
                .reduce((value1, value2) -> value1 + value2)
                .map(sum -> sum / 3);

        rollingAverage.print();

        env.execute("Rolling Average Example");
    }
}

要運行這些示例,請確保已安裝 Java 開發工具包(JDK)并正確配置了 Flink。然后,將示例代碼保存為 Java 文件(例如 SimpleStreamProcessing.java),并使用以下命令編譯和運行:

javac -cp /path/to/flink/lib/*: SimpleStreamProcessing.java
java -cp /path/to/flink/lib/*: SimpleStreamProcessing.class SimpleStreamProcessing

請注意,您需要根據實際情況替換 /path/to/flink/lib/ 為 Flink 安裝目錄中 lib 文件夾的路徑。

0
内乡县| 南木林县| 全州县| 恭城| 许昌县| 闵行区| 承德市| 平顺县| 临漳县| 武山县| 石泉县| 潍坊市| 和静县| 瑞金市| 洛川县| 文成县| 咸宁市| 临西县| 北票市| 凭祥市| 黔西县| 乐东| 桃园县| 讷河市| 丰城市| 溆浦县| 南溪县| 合山市| 永康市| 高清| 拜城县| 邻水| 漳浦县| 呼和浩特市| 兴文县| 罗源县| 伊金霍洛旗| 宜兰县| 兰考县| 榆社县| 诏安县|