在進行Python爬蟲優化時,可以從多個方面入手,包括代碼結構、請求速度、解析速度、存儲速度和異常處理等。以下是一些具體的優化建議:
requests
庫結合concurrent.futures
模塊(如ThreadPoolExecutor
或ProcessPoolExecutor
)進行并發請求,提高請求速度。import requests
from concurrent.futures import ThreadPoolExecutor
def fetch(url):
response = requests.get(url)
return response.text
urls = ['http://example.com'] * 10
with ThreadPoolExecutor(max_workers=10) as executor:
results = list(executor.map(fetch, urls))
lxml
或BeautifulSoup
,它們比Python內置的html.parser
更快。from lxml import html
import requests
url = 'http://example.com'
response = requests.get(url)
tree = html.fromstring(response.content)
title = tree.xpath('//title/text()')[0]
Redis
)來存儲,減少重復請求。try-except
塊捕獲異常,避免程序崩潰。import requests
from requests.exceptions import RequestException
def fetch_with_retry(url, retries=3):
for i in range(retries):
try:
response = requests.get(url)
response.raise_for_status()
return response.text
except RequestException as e:
if i == retries - 1:
raise e
time.sleep(2 ** i)
通過以上優化措施,可以顯著提高Python爬蟲的性能和穩定性。