在Python爬蟲開發中,優化代碼可以從多個方面進行。以下是一些常見的優化策略:
threading
或multiprocessing
庫來并行處理請求,提高爬蟲的抓取速度。asyncio
庫進行異步IO操作,減少等待時間。requests
庫的Session
對象)來復用連接,減少建立和關閉連接的開銷。try-except
塊捕獲和處理異常,確保爬蟲的穩定性。以下是一個簡單的爬蟲示例,展示了上述優化策略的應用:
import requests
from bs4 import BeautifulSoup
import asyncio
import aiohttp
import time
class WebScraper:
def __init__(self, proxies=None):
self.session = requests.Session()
if proxies:
self.session.proxies = proxies
self.headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'}
async def fetch(self, url):
async with aiohttp.ClientSession() as session:
async with session.get(url, headers=self.headers) as response:
return await response.text()
def parse(self, html):
soup = BeautifulSoup(html, 'html.parser')
# 解析邏輯
return parsed_data
async def run(self, urls):
tasks = [self.fetch(url) for url in urls]
htmls = await asyncio.gather(*tasks)
for html in htmls:
data = self.parse(html)
# 存儲數據
self.save_data(data)
time.sleep(1) # 設置請求間隔
def save_data(self, data):
# 存儲數據到數據庫或文件
pass
if __name__ == "__main__":
proxies = {
'http': 'http://proxy.example.com:8080',
'https': 'http://proxy.example.com:8080'
}
scraper = WebScraper(proxies=proxies)
urls = [
'http://example.com/page1',
'http://example.com/page2'
]
asyncio.run(scraper.run(urls))
通過模塊化設計、多線程/多進程、異步IO、連接池、代碼簡潔性優化、反爬蟲策略優化、數據存儲優化以及錯誤處理和日志記錄等手段,可以顯著提高Python爬蟲的性能和穩定性。