91超碰碰碰碰久久久久久综合_超碰av人澡人澡人澡人澡人掠_国产黄大片在线观看画质优化_txt小说免费全本

溫馨提示×

Flink在Spring Boot中的數據源和數據接收器配置

小樊
106
2024-08-30 04:47:20
欄目: 大數據

在 Spring Boot 中使用 Apache Flink,你需要先添加 Flink 的依賴項到你的項目中。以下是一個簡單的例子,展示了如何在 Spring Boot 應用程序中配置 Flink 數據源(Source)和數據接收器(Sink)。

  1. 首先,在你的 pom.xml 文件中添加 Flink 的依賴項:
    <!-- Spring Boot dependencies -->
    ...

    <!-- Flink dependencies -->
   <dependency>
       <groupId>org.apache.flink</groupId>
       <artifactId>flink-java</artifactId>
       <version>${flink.version}</version>
    </dependency>
   <dependency>
       <groupId>org.apache.flink</groupId>
       <artifactId>flink-streaming-java_${scala.binary.version}</artifactId>
       <version>${flink.version}</version>
    </dependency>
   <dependency>
       <groupId>org.apache.flink</groupId>
       <artifactId>flink-connector-kafka_${scala.binary.version}</artifactId>
       <version>${flink.version}</version>
    </dependency>
</dependencies>
  1. 創建一個 Flink 配置類,用于定義數據源和數據接收器:
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;

import java.util.Properties;

@Configuration
public class FlinkConfiguration {

    @Value("${kafka.bootstrap.servers}")
    private String kafkaBootstrapServers;

    @Value("${kafka.input.topic}")
    private String inputTopic;

    @Value("${kafka.output.topic}")
    private String outputTopic;

    @Bean
    public StreamExecutionEnvironment streamExecutionEnvironment() {
        return StreamExecutionEnvironment.getExecutionEnvironment();
    }

    @Bean
    public FlinkKafkaConsumer<String> kafkaConsumer() {
        Properties properties = new Properties();
        properties.setProperty("bootstrap.servers", kafkaBootstrapServers);
        properties.setProperty("group.id", "flink-spring-boot");
        return new FlinkKafkaConsumer<>(inputTopic, new SimpleStringSchema(), properties);
    }

    @Bean
    public FlinkKafkaProducer<String> kafkaProducer() {
        Properties properties = new Properties();
        properties.setProperty("bootstrap.servers", kafkaBootstrapServers);
        return new FlinkKafkaProducer<>(outputTopic, new SimpleStringSchema(), properties);
    }

    @Bean
    public DataStream<String> dataStream(StreamExecutionEnvironment env, FlinkKafkaConsumer<String> consumer) {
        return env.addSource(consumer);
    }
}
  1. 在你的 application.properties 文件中配置 Kafka 相關參數:
kafka.bootstrap.servers=localhost:9092
kafka.input.topic=input-topic
kafka.output.topic=output-topic
  1. 最后,在你的 Spring Boot 應用程序中使用 Flink 數據源和數據接收器:
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.CommandLineRunner;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class FlinkSpringBootApplication implements CommandLineRunner {

    @Autowired
    private StreamExecutionEnvironment env;

    @Autowired
    private DataStream<String> dataStream;

    @Autowired
    private FlinkKafkaProducer<String> kafkaProducer;

    public static void main(String[] args) {
        SpringApplication.run(FlinkSpringBootApplication.class, args);
    }

    @Override
    public void run(String... args) throws Exception {
        // Process the data stream as needed
        dataStream.map(value -> value.toUpperCase()).addSink(kafkaProducer);

        // Execute the Flink job
        env.execute("Flink Spring Boot Example");
    }
}

這個例子展示了如何在 Spring Boot 應用程序中配置 Flink 數據源(從 Kafka 讀取數據)和數據接收器(將處理后的數據寫入 Kafka)。你可以根據自己的需求修改數據處理邏輯。

0
永济市| 华池县| 五大连池市| 阳原县| 清流县| 新竹市| 元阳县| 阳西县| 五台县| 永春县| 铜梁县| 萨迦县| 衡水市| 屯留县| 武陟县| 政和县| 四会市| 红原县| 天等县| 开封县| 汉源县| 广汉市| 彝良县| 神农架林区| 称多县| 策勒县| 化隆| 阳西县| 郑州市| 西平县| 杭锦后旗| 四平市| 建始县| 乌拉特后旗| 甘洛县| 扬州市| 富平县| 城固县| 洮南市| 勐海县| 乳源|